• Title/Summary/Keyword: Poly-acetate

Search Result 247, Processing Time 0.02 seconds

Multilamellar Liquid Crystals for the Stabilization of Retinoids (레티노이드 안정화를 위한 다중층 액정제제)

  • Yoon, Moung-Seok;Chung, Youn-Bok;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.279-285
    • /
    • 1999
  • Retinoids in anti-wrinkle cosmetics are widely used for the treatment of the photoaging skin these days, but very unstable in the presence of water. Multilamellar liquid crystal vesicles consisted of $poly(oxyethylene)_{15}oleyl$ ether $(POE_{15}OE)$ or $poly(oxyethylene)_{15}stearyl$ ether $(POE_{15}SE)$, cetostearyl alcohol (CSA) and cholesterol or oils were prepared to increase the stability of retinyl acetate or retinyl palmitate. $POE_{15}SE-CSA-Water$ systems were more unstable than $POE_{15}SE-CSA-Water$ systems due to the bended structure of oleyl groups. For the modification of vesicles, cholesterol was added. The enthalpy values were decreased reaching to zero and the water permeability of systems was decreased, but the stabilizaton of retinyl acetate was not greatly improved. The stability of retinyl acetate may depend on its location in the structure. Various oils were added for further stabilization and isopropyl myristate was most effective. In practice, retinyl palmitate showed better stability in the same vesicle than retinyl acetate, and the improved vesicles could be used for the anti-wrinkle cosmetics

  • PDF

Studies on Polymer Resist for Fine Line Lithography (Fine Line Lithography를 위한 Polymer Resist에 관한 연구)

  • 박이순
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.11 no.1
    • /
    • pp.71-84
    • /
    • 1993
  • Practically to put use high-photosensitive polymer, poly(vinyl cinnamoyl acetate), we investigated and confirmed UCHIDA`s synthesis, according to control solvent, which is the esterification of poly (vinyl alcohol) with monochloroacetic acid and can be freely conrolled the successive cinnamoyl acetoxyl esterfication of PVCiA, and intruducing photosensitizers,studied the photosensitivity of PVCiA.

  • PDF

Transesterification Kinetics of Bis(2-Hydroxyethyl) Terephthalate with 1,4-Butandiol (Bis(2-Hydroxyethyl) Terephthalate와 1,4-Butanediol의 에스테르 교환 반응)

  • Jeon, Hyeongcheol;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.103-111
    • /
    • 2018
  • Transesterification of BHET (Bis (2-Hydroxyethyl) Terephthalate), monomer of PET (Poly Ethylene Terephthalate) to BHBT (Bis (4-Hydroxybutyl Terephthate), monomer of PBT (Poly Butylene Terephthalate), using 1,4-BD (1,4-butanediol) were investigated. Zinc acetate was used as a catalyst for the reaction. Amounts of BHET, EG, and THF (Tetrahydrofuran) in a batch reactor were measured for determining the reaction kinetics. Mathematical models of the batch reactor for the transesterification reaction were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. Model predictions for the transesterification were in good agreement with experimental results.

Acid-Catalyzed Hydrolysis Reaction of Poly(vinyl acetate) (폴리(비닐 아세테이트)의 산촉매 가수분해 반응)

  • Park, Sang-Soo;Yoon, Hi-Sook
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.304-307
    • /
    • 2005
  • The acid-catalyzed hydrolysis reaction of poly(vinyl acetate) (PVAc) in water/acetic acid solution at $35^{circ}C$ was studied at two different solvent compositions. The mole fractions of vinyl acetate (Vac) and vinyl alcohol (VA) during the course of the reaction were determined by NMR, and the equilibrium constant $K_{eq}$ of the reaction was determined using the molar ratio of VAc to VA at the chemical equilibrium. $K_{eq}$ was 0.75 (${\pm}0.01$) when the VAc mole faction at the equilibrium was 0.78 (${\pm}0.01$) and it was 0.69 (${\pm}0.01$) when the VAc mole fraction was 0.57 (${\pm}$0.02). The reaction was found to be a pseudo 1-st order reaction with the rate coefficient at $3.4{\times}10^{-6}/sec$.

Synthesis of High Molecular Weight Poly(vinyl alcohol) by Low Temperature Polymerization of Vinyl Acetate in Tertiary Butyl Alcohol and the Following Saponification (아세트산비닐의 삼차부틸알코올계 저온 중합 및 비누화에 의한 고분자량 폴리비닐알코올의 합성)

  • 류원석;한성수;최진현;유상우;홍성일
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.610-620
    • /
    • 2000
  • Vinyl acetate (VAc) was polymerized at 30, 40, and 5$0^{\circ}C$ using 2,2'-azobis (2,4-dimethylvaleronitrile) (ADMVN) and tertiary butyl alcohol (TBA) as the initiator and the solvent, respectively. High molecular weight (HMW) atactic poly(vinyl alcohol) (PVA) was prepared by saponifying the poly(vinyl acetate) (PVAc) synthesized. The effect of polymerization conditions were investigated in terms of conversion, degree of branching for acetyl group of PVAc, and molecular weight of both PVAc and PVA. The polymerization rate of VAc in TBA was proportional to the 0.49th power of ADMVN concentration in good accordance with the theoretical value of 0.5. HMW-PVA with high yield could be obtained successfully, probably due to lower polymerization temperature and decreased chain transfer reaction rate which was achieved by adopting ADMVN and TBA. PYAc having average degree of polymerization (P$_{n}$) of 10000~13000 was obtained at the conversion of 35~70%. Saponification of so prepared PVAc yielded PVA having P$_{n}$ of 2400~6100. The syndiotactic diad content increased with decreasing polymerization temperature and increasing VAc concentration due to a steric hindrance effect of TBA during polymerization.

  • PDF

Preparation and Properties of PVP (poly-4-vinylphenol) Gate Insulation Film For Organic Thin Film Transistor (유기박막 트랜지스터용 PVP (poly-4-vinylphenol) 게이트 절연막의 제작과 특성)

  • Baek, In-Jae;Yoo, Jae-Hyouk;Lim, Hun-Seung;Chang, Ho-Jung;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.359-363
    • /
    • 2005
  • The organic insulation devices with MIM (metal-insulator-metal) structures as PVP gate insulation films were prepared for the application of organic thin film transistors (OTFT). The co-polymer organic insulation films were synthesized by using PVP(poly-4-vinylphenol) as solute and PGMEA (propylene glycol monomethyl ether acetate) as solvent. The cross-linked PVP insulation films were also prepared by addition of poly (melamine-co-formaldehyde) as thermal hardener. The leakage current of the cross-linked PVP films was found to be about 300 pA with low current noise. and showed better property in electrical properties as compared with the co-polymer PVP insulation films. In addition, cross-linked PVP insulation films showed better surface morphology (roughness), showing about 0.11${\~}$0.18 nF in capacitance for all PVP film samples.

  • PDF

UV-induced Crosslinking of Poly(vinyl acetate) Films Containing Benzophenone (벤조페논을 함유한 폴리비닐아세테이트 필름의 자외선 조사에 의한 가교)

  • Sim, Young-Jae;Seo, Eun-Kyo;Choi, Gyong-Jun;Yoon, Sung-Jong;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.33-38
    • /
    • 2009
  • Poly(vinyl acetate) films containing benzophenone were photocrosslinked by continuous UV irradiation.UV irradiation of PVAc film containing 5% benzophenone induced bulk crosslinking of the polymer indicated by 84.1% of gel fraction after ethyl acetate extraction. The crosslinking was attributed to the recombination of tertiary polymer radicals generated upon UV irradiation, which was enhanced by the hydrogen abstraction of benzophenone. Also the UV irradiation resulted in scission of ester linkage and photooxidation of PVAc surface, which was verified by ATR and zeta potential analysis, implying that the PVAc surface became more polar and hydrophilic. The zeta potential proportionally increased from +4.5mV to -26.8 mV with increasing UV irradiation. Also the surface energy of the PVAc film increased with higher UV irradiation upto 56.5 $mJ/m^2$ by the enhanced Lewis acid/base component with larger contribution of Lewis acid parameter. Accordingly the crosslinked PVAc showed higher thermal stability with increasing UV energy.