• Title/Summary/Keyword: Poly-Urea

Search Result 52, Processing Time 0.025 seconds

Properties of Paint Protection Film Containing Poly(urea-urethane)-based Self-Recovery Coating Layer (Poly(urea-urethane) 자기복원 코팅층을 가진 도장 보호필름 물성 연구)

  • Minseok Song
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.69-75
    • /
    • 2023
  • Recently, the application of paint protection films (PPFs) for automobiles having a self-recovery coating layer has been grown up. In this study, we report the evaluation results on the basic physical properties of a poly(vinyl chloride)- based PPF containing poly(urea-urethane) hybrid self-recovery coating layer. Depending on the main chemical composition and the thickness of poly(urea-urethane)-based coating layer for PPF, the self-recovery performance by an optical microscope and the stain resistance through color difference value are measured. To improve the surface properties and show its easy-cleaning effect against the polluted things, silicone-modified polyacrylate is introduced to the self-recovery coating composition. The contact angle of water on the coated surface is confirmed to show its hydrophobic surface. Finally, accelerated weathering test of paint protection film with poly(urea-urethane) hybrid coating layer is performed to check the possibility of discoloration and deformation due to long-term exposure on harsh condition.

Development of Voltammetric Urea Sensors Based Poly(3-methylthiophene) film (Poly(3-methylthiophene)막 위에 urease를 고착시킨 Voltammetric Urea Sensor의 개발)

  • 박성호;진준형;홍석인;민남기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.314-316
    • /
    • 2000
  • Urea is detected as an indicator of renal disease in the human body. For these reasons, many biosensors for urea have been developed based on the enzymatic reaction of urea hydrolysis catalyzed by urease. Potentiometric method is applied reversible reaction system. But urea hydrolysis reaction may not has a reversible reaction mechanism in electrode surface. Therefore we applied to voltammtricmethod to obtain a sensitivity curve. The sensitivity of sensors was 34 ${\mu}$A/decade.

  • PDF

Development and Applicability Evaluation of High Performance Poly-urea for RC Construction Reinforcement (RC 구조물 보강을 위한 고성능 폴리우레아의 개발 및 적용성 평가)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Choi, Hong-Shick;Heo, Gweon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.169-176
    • /
    • 2010
  • Generally, poly-urea is widely used as waterproof coating material due to its superior adhesiveness, elongation capacity, and permeability resistance. In addition, it can be quickly and easily applied on structure surfaces using spray application. Since it hardens in about 30 seconds after application, its construction efficiency is very high and its usage as a special functional material is also excellent. However, currently, poly-urea is mostly used as waterproof coating material and the researches on its usage as a retrofitting material is lacking at best. Therefore, basic studies on the use of poly-urea as a general structural retrofitting material are needed urgently. The objective of this study is to develop most optimum poly-urea composition for structure retrofitting purpose. Moreover, the structural strengthening capacity of the developed poly-urea is evaluated through flexural capacity experiments on RC beams and RC slabs. From the results of the flexural test of poly-urea strengthened RC beam and slab specimens, the poly-urea and concrete specimen showed monolithic behavior where ductility and ultimate strength of the poly-urea strengthened specimen showed slight increase. However, the doubly reinforced specimens with FRP sheet and poly-urea showed lower capacity than that of the specimen reinforced only with FRP sheet.

Electrical Characteristics of Poly(ethylene oxide)-urea Complex Films

  • Cho, Mi-Yeon;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.136-138
    • /
    • 2012
  • The electrical characteristics of complex films composed of poly(ethylene oxide) (PEO) and urea as a function of the urea concentration were examined in this study. Moreover, their structural characteristics were also compared. Depending on the urea concentration, the structural phases were classified as PEO+${\beta}$-phase composite, ${\beta}$-phase+${\alpha}$-phase composites, or ${\alpha}$-phase composite+urea. At urea concentrations below ~0.064 M, the ${\beta}$-phase was dominant in the complex film. Moreover, the conductance increased rapidly with an increase in the urea concentration. For urea concentrations ranging from ~0.064 to ~0.25 M, the ${\beta}$-phase was gradually substituted by the ${\alpha}$-phase. As the film was composed entirely of the ${\alpha}$-phase at urea concentrations greater than ~0.25 M, its conductance was decreased. In this study, the electrical characteristics observed for the different phases are analyzed and discussed.

Phosgen-free Synthesis of Oligoureas Having Amino End-groups: Their Application to the Synthesis of Poly(urea-imide)

  • Chang, Ji-Young;Kim, Beom-Jin
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.55-59
    • /
    • 2002
  • The thermal reaction of acetoacetanilide in the presence of aniline or phenol yielded carbanilide in quantitative yields. This reaction was applied to the synthesis of polyurea. Bisacetoacetamides were prepared from diamines and diketene in DMF. They were thermally polymerized in the presence of phenol or a diamine (6FDA) to yield polyureas of low molecular weights. The polymers were soluble in DMSO and NMP. $^1{H-NMR}$ analysis showed that they had amino group terminated structures. Poly(urea-imide) was synthesized by the reaction of an oligourea diamine with pyromellitic dianhydride in NMP. The concentration of terminal amino groups was determined by an acid-base titration. The thermal property of poly(urea-imide) was evaluated by thermogravimetric analysis (TGA). Initial decompisition took place at 332-$350^{\circ}C$.

Pseudo Dynamic Test Study on Seismic Performance Evaluation of RC Columns Retrofitted by PolyUrea (내진보강용 폴리우레아로 보강된 철근콘크리트 기둥의 내진성능 평가에 대한 유사동적실험 연구)

  • Cho, Chul Min;Lee, Doo Sung;Kim, Tae Kyun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.289-301
    • /
    • 2017
  • As earthquakes have frequently happened all over the world, huge losses of human life and property have occurred. Therefore, retrofitting and strengthen technologies of non-seismically designed structures in Korea are urgent. Also, there has been a growing interest about seismic retrofitting, where researches on the topic have been actively pursued in Korea. The study results showed that ductility inducing retrofitting method is more superior stiffness inducing method. In Japan, Super Reinforcement with Flexibility (SRF) was introduced. Therefore, in this study, seismic performance evaluation was performed through pseudo dynamic test and uniaxial compression test for RC column retrofitted by PolyUrea for ductility inducing retrofitting material. Uniaxial compression test results showed that strength of all specimens retrofitted by PolyUrea was higher than that of RC specimens. Also, all specimens retrofitted by PolyUrea also showed ductile fracture behavior. In pseudo dynamic test, by appling real earthquake record, the seismic behavior of RC column reinforced by PolyUrea was evaluated through relative displacement, reinforcement strain, displacement ductility, and dissipation energy. The results showed that PolyUrea helped to enhance seismic performance of RC columns.

A Study on the Development of Poly-Urea for Porcelain Restoration (폴리우레아 도자기 복원 재료의 적용)

  • Han, Won-Sik;Wi, Koang-Chul;Oh, Seung-Jun;Lee, Young-Hoon
    • Journal of Conservation Science
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • This study synthesized poly-urea and used it as a filler material for the restoration of porcelain. The synthesized poly-urea was manufactured as a resin and hardener mix that does not undergo contraction during curing, and is unfading. Given an adhesion strength of $180kg/cm^2$ and shearing strength of $200kg/cm^2$, the synthesized poly-urea exhibited the same efficacy as the epoxy putty currently sold in the market. Moreover, it also overcame the drawback of foaming encountered by urethane restoratives, which are a structurally similar type. The hardening time and pot life could also be controlled using additives. The poly-urea used for the restoration of modern artifacts presented a pot life of approximately one hour and took 12 h for complete hardening ($T_{90}$). When a $2{\times}2{\times}2cm$-sized test sample was added to xylene, poly-urea started to separate approximately two hours later and completed perfect pulverization within the solution 24 h later, demonstrating its reversibility. When directly applied to contemporary artifacts, it demonstrated the potential for restoration, as well as convenience and colorfulness.

Urea Diffusional Characteristics of Film from Dispersion Based on Poly(ethylene-co-acrylic acid) (Poly(ethylene-co-acrylic acid)의 분산입자 제조와 그 필름의 요소 투과특성)

  • Yu, Dong-Guk;An, Jeong-Ho
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.90-97
    • /
    • 2001
  • Dispersions are prepared from poly(ethylene-co-acrylic acid) (PEAA) ionomer with two different counter-ions, ammonium and sodium. The diffusional characteristic of urea aqueous solution are measured for the films prepared from the above mentioned dispersions. It is attempted to find the relationship between diffusional behavior and various chemical and physical characteristics of films. DSC is employed to characterize glass transition temperature and degree of crystallinity and the structural features of crystal phase and ionic clusters are examined by WAXD and FTIR. The diffusional characteristics of ionomer is found to be dependent on various parameters such as the size of initial dispersion as well as the kind of counter ion and the degree of neutralization.

  • PDF

Microencapsulation of Phenyl Acetate with Poly(urea-formaldehyde) (Poly(urea-formaldehyde)에 의한 페닐아세테이트의 미세캡슐화)

  • Jo, Ye-Hyun;Song, Young-Kyu;Yu, Hwan-Chul;Cho, Sung-Youl;Kumar, S. Vijay;Ryu, Byung-Cheol;Chung, Chan-Moon
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.152-156
    • /
    • 2011
  • We have performed microencapsulation of phenyl acetate using poly (urea-formaldehyde) as a shell material, and studied the effect of agitation rate,. core/shell mass ratio, surfactant concentration, and reaction time on capsule characteristics such as size, shell thickness, and surface morphology. The formation of microcapsules was confirmed by FTIR and TGA, and capsule characteristics were studied by optical microscopy and FE-SEM. Capsule size and shell thickness reduced with increasing agitation rate. As the mass of shell material was increased, shell thickness and nanoparticles on capsule surface increased. Capsule size and shell thickness decreased with increasing the concentration of a surfactant. Increasing reaction time caused increased capsule yield and shell thickness.

Temperature Dependence of the Intrinsic Viscosities for Poly(ethylene oxide)-Water and -Aqueous Urea Systems (Poly(ethylene oxide)-물, Poly(ethylene oxide)-요소 수용액에 대한 고유점도의 온도의존)

  • Jeon, Sang Il;Chang, Gue Dong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.12
    • /
    • pp.748-755
    • /
    • 1996
  • The effects of temperature on the conformational properties of poly(ethylene oxide) (PEO) in aqueous and aqueous urea solutions are reported. The values of intrinsic viscosity and Huggins coefficients for the PEO dissolved in water and urea/water mixtures (urea concentration 0.2, 1, and 2 M) were obtained using a viscometry method and discussed with respect to the change of water structure. At low temperatures (below 22 $^{\circ}C)$, the PEO-water interaction is favorable and the chain can be extended, whereas at higher temperatures (above 24 $^{\circ}C)$, it is less favorable and the chain can be contracted by a hydrophobic hydration, i.e., the PEO-water interaction becomes to be unfavorable with the increase in temperature. As the urea is added to the system, the PEO chain can be more extended and huged by the perturbation of the structured water originating from the unfavorable PEO-water interaction. The effect of temperature on the intrinsic viscosity values shows an Arrhenius behavior. The activation energies of the viscous flow were obtained and discussed.

  • PDF