• Title/Summary/Keyword: Poly (ethylene glycol)

Search Result 390, Processing Time 0.034 seconds

Preparation and Polarization Properties of Poly(vinyl alcohol) Polarizing Film Using the Mixed System of Supercritical $CO_2$/Organic Solvents/Dichroic Dye (초임계 탄산가스/유기용매/이색성 염료의 혼합계를 이용한 폴리(비닐 알코올) 편광필름의 제조 및 편광특성)

  • Park, Ki-Sang;Choi, E-Joon;Chang, Jin-Ho;Park, Il-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.458-466
    • /
    • 2011
  • In the mixed system of supercritical carbon dioxide/organic solvents, poly(vinyl alcohol)(PVA) film of high degree of hydrolysis could be dyed with a dichroic dye of C. I. direct black 22(DB22) and as a result, high durability was obtained. Especially, as a dye dispersant in a supercritical fluid phase, a mixed solvent system of ethylene glycol: dimethyl sulfoxide=4 : 6 weight ratio was investigated. Then the optimum pressure for dyeing could be reduced down to 200 bar. Using this supercritical fluid system, the maximum dyeing appeared as the transmittance of less than 1% and the waste amount was reduced to the level of 1/10. After 500% drawing of this PVA film, both the polarizing efficiency of 94% and the single piece transmittance of 30% were obtained. The limitation of DB22 and further improvements were also discussed.

pH-Sensitivity Control of PEG-Poly(${\beta}$-amino ester) Block Copolymer Micelle

  • Hwang, Su-Jong;Kim, Min-Sang;Han, Jong-Kwon;Lee, Doo-Sung;Kim, Bong-Sup;Choi, Eun-Kyung;Park, Heon-Joo;Kim, Jin-Seok
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.437-442
    • /
    • 2007
  • Poly(ethylene glycol) methyl ether (PEG)-poly(${\beta}$-amino ester) (PAE) block copolymers were synthesized using a Michael-type step polymerization, and the construction of pH-sensitive polymeric micelles (PM) investigated. The ${\beta}$-amino ester block of the block copolymers functioned as a pH-sensitive moiety as well as a hydrophobic block in relation to the ionization of PAE, while PEG acted as a hydrophilic block, regardless of ionization. The synthesized polymers were characterized using $^1H-NMR$, with their molecular weights measured using gel permeation chromatography. The $pK_b$ values of the pH-sensitive polymers were measured using a titration method. The pH-sensitivity and critical micelle concentration (CMC) of the block copolymers in PBS solution were estimated using fluorescence spectroscopy. The pH dependent micellization behaviors with various bisacrylate esters varied within a narrow pH range. The critical micelle concentration at pH 7.4 decreased from 0.032 to 0.004 mg/mL on increasing the number of methyl group in the bisacrylate from 4 to 10. Also, the particle size of the block copolymer micelles was determined using dynamic light scattering (DLS). The DLS results revealed the micelles had an average size below 100 nm. These pH-sensitive polymeric micelles may be good carriers for the delivery of an anticancer drug.

Olefin Separation Membranes Based on PEO/PDMS-g-POEM Blends Containing AgBF4/Al(NO3)3 Mixed Salts (AgBF4/Al(NO3)3 혼합염이 포함된 PEO/PDMS-g-POEM 블렌드 기반의 올레핀 분리막)

  • Kim, Sang Jin;Jung, Jung Pyu;Park, Cheol Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.496-502
    • /
    • 2015
  • Facilitated transport is one of the possible solutions to simultaneously improve permeability and selectivity, which is challenging in conventional polymer-based membranes. Olefin/paraffin separation using facilitated transport membrane has received much attention as an alternative solution to the conventional distillation process. Herein, we report olefin separation composite membranes based on the polymer blends containing $AgBF_4/Al(NO_3)_3$ mixed salts. Free radical polymerization process was used to synthesize an amphiphilic graft copolymer of poly(dimethyl siloxane)-graft- poly(ethylene glycol) methyl ether methacrylate (PDMS-g-POEM). In addition, poly(ethylene oxide) (PEO) was introduced to the PDMS-g-POEM graft copolymer to form polymer blends with various ratios. The propylene/propane mixed-gas selectivity and permeance reached up to 5.6 and 10.05 GPU, respectively, when the PEO loading was 70 wt% in polymer blend. The improvement of olefin separation performance was attributed to the olefin facilitating silver ions as well as the highly permeable blend matrix. The stabilization of silver ions in the composite membrane was achieved through the introduction of $Al(NO_3)_3$ which suppressed the reduction of silver ions to silver particles.

Effects of Poly(Styrene-Co-Maleic acid) as Adhesion Promoter on Rheology of Aqueous Cu Nanoparticle Ink and Adhesion of Printed Cu Pattern on Polyimid Film (수계 Cu 나노입자 잉크에서 Poly(styrene-co-maleic acid) 접착 증진제가 잉크 레올로지와 인쇄패턴의 접착력에 미치는 영향)

  • Jo, Yejin;Seo, Yeong-Hui;Jeong, Sunho;Choi, Youngmin;Kim, Eui Duk;Oh, Seok Heon;Ryu, Beyong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.719-726
    • /
    • 2015
  • For a decade, solution-processed functional materials and various printing technologies have attracted increasingly the significant interest in realizing low-cost flexible electronics. In this study, Cu nanoparticles are synthesized via the chemical reduction of Cu ions under inert atmosphere. To prevent interparticle agglomeration and surface oxidation, oleic acid is incorporated as a surface capping molecule and hydrazine is used as a reducing agent. To endow water-compatibility, the surface of synthesized Cu nanoparticles is modified by a mixture of carboxyl-terminated anionic polyelectrolyte and polyoxylethylene oleylamine ether. For reducing the surface tension and the evaporation rate of aqueous Cu nanoparticle inks, the solvent composition of Cu nanoparticle ink is designed as DI water:2-methoxy ethanol:glycerol:ethylene glycol = 50:20:5:25 wt%. The effects of poly(styrene-co-maleic acid) as an adhesion promoter(AP) on rheology of aqueous Cu nanoparticle inks and adhesion of Cu pattern printed on polyimid films are investigated. The 40 wt% aqueous Cu nanoparticle inks with 0.5 wt% of Poly(styrene-co-maleic acid) show the "Newtonian flow" and has a low viscosity under $10mPa{\cdots}S$, which is applicable to inkjet printing. The Cu patterns with a linewidth of $50{\sim}60{\mu}m$ are successfully fabricated. With the addition of Poly(styrene-co-maleic acid), the adhesion of printed Cu patterns on polyimid films is superior to those of patterns prepared from Poly(styrene-co-maleic acid)-free inks. The resistivities of Cu films are measured to be $10{\sim}15{\mu}{\Omega}{\cdot}cm$ at annealing temperature of $300^{\circ}C$.

Antifouling Paint Resin Based on Polyurethane Matrix with Quaternary Ammonium Salt (Quaternary Ammonium Salt를 도입한 방오도료용 폴리우레탄 수지)

  • Kim, Dae-Hee;Jung, Min-Yeong;Park, Hyun;Lee, In-Won;Chun, Ho-Hwan;Jo, Nam-Ju
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.122-129
    • /
    • 2015
  • Recently, the development of a new class of anti-fouling paint resin which has excellent anti-fouling performance and no persistence in the marine ecology is necessary. In this study, we first polymerized polyurethanes (PUs) as the other type of matrix which have carboxylic acid groups by using poly(ethylene glycol) (PEG), 4,4'-diphenylmethane diisocyanate (MDI), and 2,2'-bis(hydroxyl methyl)-propionic acid (DMPA). And next, we synthesized final resins having quaternary ammonium salts on pendant acid groups of PUs. After synthesis, the physical self-polishing property of resin by the measurement of reduced thickness in sea water was tested. The mechanical property of antifouling paint resin was good when the molecular weight of PEG was 600 or less. It was confirmed that the adhesion of PU resin was deteriorated when the content of quaternary ammonium salt was incorporated over specific value.

A Study on the Ionic Conducting Characteristics of Electrolyte Membranes Containing KI and $I_2$ for Dye Sensitized Solar Cell (염료감응형 태양전지를 위한 KI 및 $I_2$를 포함하는 유기/무기 복합 전해질막의 이온전도특성에 대한 연구)

  • Kang, Tae-Un;Shin, Chun-Hwa;Choi, Mi-Jung;Koo, Ja-Kyung;Cho, Nam-Jun
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • Organic/inorganic composite electrolyte membranes were prepared for dye sensitized solar cell (DSSC). Poly (ethylene glycol) (PEG)s with various molecular weight (600, 1,500, 2,000 and 3,400) were ethoxysilated to fabricate organic/inorganic composite materials through sol-gel processes. The electrolyte membranes were produced by doping the composite materials with KI and $I_2$, and their ionic conducting behaviors were investigated. The ionic conductivity of the composite membrane was highly affected by PEG molecular weight. The highest conductivity was shown by the composite membrane prepared with PEG with the molecular weight of 2,000. The composite electrolyte membranes showed considerable improvement of ionic conductivity. Compared to PEO electrolyte membranes, the composite electrolyte membrane by PEG, MW 2,000 showed much higher ionic conductivity.

The Gelation Studies of PAA Polyelectrolytes in Aqueous Media (폴리 아크릴산 고분자전해질의 수용액 속에서의 겔화에 관한 연구)

  • Sohn, Jeong-In
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.443-450
    • /
    • 1994
  • Polyelectrolytes of various ionization degrees, which are prepared by neutralization of poly(acrylic acid)(PAA), were crosslinked by ethylane glycol diglycidyl ether(EGDE) in aqueous solution. $C_{gel}$, the minimum polymer concentration at which gelation occurs, was higher than expected. $C_{gel}$ was comparable with that of neutral polymer. This is considered to be due to the size contraction of polyelectrolyte, which comes from ionic strength increase as polymer concentration is increased. $C_{gel}$ is low when molecular weight of the sample becomes high. It reveals that polyelectrolyte is crosslinked in coil form not in extended rod form. This behavior is similar to the crosslinking of neutral polymers. Polyelectrolytes of partially ionized sample generally follow the behavior of fully ionized polyelectrolyte. Polyelectrolyte with added salt was also studied. Considering the pH dependence of EDGE reactivity it was difficult to compare the system which differs in pH significantly.

  • PDF

Effects of Extracellular Stimulation of Different Niche Condition on the Transcriptional Regulation of Matrix Metalloproteinase Genes in the Mouse Embryonic Stem Cells

  • Yun, Jung Im;Kim, Min Seong;Lee, Seung Tae
    • Reproductive and Developmental Biology
    • /
    • v.37 no.2
    • /
    • pp.79-83
    • /
    • 2013
  • Matrix metalloproteinases (MMPs) have been known to affect to cell migration, proliferation, morphogenesis and apoptosis by degrading the extracellular matrix. In the previous studies, undifferentiated mouse embryonic stem cells (ESCs) were successfully proliferated inside the extracellular matrix (ECM) analog-conjugated three-dimensional (3D) poly ethylene glycol (PEG)-based hydrogel. However, there is no report about MMP secretion in ESCs, which makes it difficult to understand and explain how ESCs enlarge space and proliferate inside 3D PEG-based hydrogel constructed by crosslinkers containing MMP-specific cleavage peptide sequence. Therefore, we investigated what types of MMPs are released from undifferentiated ESCs and how extracellular signals derived from various niche conditions affect MMP expression of ESCs at the transcriptional level. Results showed that undifferentiated ESCs expressed specifically MMP2 and MMP3 mRNAs. Transcriptional up-regulation of MMP2 was caused by the 3D scaffold, and activation of integrin inside the 3D scaffold upregulated MMP2 mRNAs synergistically. Moreover, mouse embryonic fibroblasts (MEFs) on 2D matrix and 3D scaffold induced upregulation of MMP3 mRNAs, and activation of integrins through conjugation of extracellular matrix (ECM) analogs with 3D scaffold upregulated MMP3 mRNAs synergistically. These results suggest that successful proliferation of ESCs inside the 3D PEG-based hydrogel may be caused by increase of MMP2 and MMP3 expression resulting from 3D scaffold itself as well as activation of integrins inside the 3D PEG-based scaffold.

An Empirical Relation between the Plating Process and Accelerator Coverage in Cu Superfilling

  • Cho, Sung-Ki;Kim, Myung-Jun;Koo, Hyo-Chol;Kim, Soo-Kil;Kim, Jae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1603-1607
    • /
    • 2012
  • The effects of plating process on the surface coverage of the accelerator were investigated in terms of Cu superfilling for device metallization. When a substrate having 500 nm-wide trench patterns on it was immersed in an electrolyte containing poly (ethylene glycol) (PEG)-chloride ion ($Cl^-$)-bis(3-sulfopropyl) disulfide (SPS) additives without applying deposition potential for such a time of about 100s, voids were generated inside of the electrodeposit. In time-evolved electrochemical analyses, it was observed that the process (immersion without applying potential) in the electrolyte led to the build-up of high initial coverage of SPS-Cl on the surface, resulting in the fast saturation of the coverage. Repeated experiments suggested that the fast saturation of SPS-Cl failed in superfilling while a gradual increase in the SPS-Cl coverage through competition with initially adsorbed PEG-Cl enabled it. Consequently, superfilling was achievable only in the case of applying the plating potential as soon as the substrate is dipped in an electrolyte to prevent rapid accumulation of SPS-Cl on the surface.

Synthesis of FDR-SPC Resin and PIV Measurement for Frictional Drag-reduction (마찰저항 저감을 위한 고분자 수지 합성 및 PIV 유동장 계측)

  • Chung, Sungwoo;Kim, Eunyoung;Chun, Ho Hwan;Park, Hyun;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2014
  • In this study, a novel FDR-SPC is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. In a low-Reynolds number flow measurement using PIV (Particle Image Velocimeter), a significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface.