• Title/Summary/Keyword: Poly(ethylene glycol)

Search Result 389, Processing Time 0.03 seconds

Norfloxacin-Incorporated Polymeric Micelle Composed of Poly(ε-caprolactone)/Poly(ethylene glycol) Diblock Copolymer (Norfloxacin이 담지된 Poly(ε-caprolactone)/Poly(ethylene glycol) 이중블록공중합체 미셀의 제조)

  • Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.137-143
    • /
    • 2009
  • We prepared norfloxacin (NFX)-incorporated polymeric micelle using poly ($\varepsilon$-caprolactone)/poly(ethylene glycol) (PCL/PEG, CE) diblock copolymers. Particle size was from 60 to 200 nm according to the PCL block length. Their critical association concentration (CAC) was decreased according to the increase of PCL block length. $^1H$-NMR study showed core-shell type micelle structures of CE diblock copolymers in the aqueous environment. Drug release from polymeric micelle was continued over 2 days. Duration of drug release was varied according to the PCL block length and drug contents. At antimicrobial activity test, polymeric micelle showed almost similar cytotoxicity compared to NFX itself.

Preparation of Polystyrene Particles Containing Poly(ethylene glycol) Groups and Their Surface Charge Characterization in Dielectric Medium (폴리(에틸렌 글리콜)기를 갖는 폴리스티렌 입자의 제조와 유전 매질내에서의 표면 전하 특성)

  • 김성훈;김배중;권대익;박기홍
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.524-530
    • /
    • 2004
  • Polystyrene particles (PS) with poly(ethylene glycol) units on surface were formed by an emulsifier-free emulsion polymerization using styrene, poly(ethylene glycol) methacrylate (PEG-MMA) or poly(ethylene glycol) dimethacrylate (PEG-diMMA) at pH 7, and followed by freeze-drying to give the corresponding powders. The structures of PS particles were confirmed by FT-IR spectroscopy, and the particle size and distribution the PS particle were observed by scanning electron microscopy and particle analyzer. Monodisperse polymer particles were obtained at a concentration of PEG-MMA 2∼5 mol% or PEG-diMMA 1 mol% relative to styrene. The highest zeta potential of polymer surface was measured to be 183 mV at a polymer of PEG-MMA 5 mol%, which was measured in dielectric medium by means of ELS-8000 dynamic light scattering.

Synthesis and Microphase Separation of Biodegradable Poly($\varepsilon$-caprolactone)-Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Multiblock Copolymer Films

  • You, Jae-Ho;Choi, Sung-Wook;Kim, Jung-Hyun;Kwak, Young-Tae
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.609-613
    • /
    • 2008
  • Poly($\varepsilon$-caprolactone)-poly(ethylene glycol)-poly($\varepsilon$-caprolactone) (PCL-PEG-PCL) multiblock copolymers at various hydrophobic-hydrophilic ratios were successfully synthesized by the chain extension of triblock copolymers through isocyanate (hexamethylene diisocyanate). Biodegradable films were prepared from the resulting multiblock copolymers using the casting method. The mechanical properties of the films were improved by chain extension of the triblock copolymers, whereas the films prepared by the triblock copolymers were weak and brittle. Atomic force microscopy (AFM) of the multiblock copolymer film showed that the hydrophilic PEG had segregated on the film surface. This is consistent with the observed contact angle of the films.

Recycling of Poly(ethylene terephthalate) via Methanolysis without Catalyst (무촉매 메탄올 분해에 의한 Poly(ethylene terephthalate)의 재활용에 관한 연구)

  • Lee, Yoon-Bae;shin, Jae-Sick
    • Clean Technology
    • /
    • v.8 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • In order to recycle poly(ethylene terephthalate), methanolysis has been investigated at elevated temperature and under high pressure without catalyst to afford dimethyl terephthalate and ethylene glycol. The reaction was carried out under 62 atm, $310^{\circ}C$ for 50min to obtain 98% dimethyl terephthalate. The method has been suggested as a simple and economical one to recycle the poly(ethylene terephthalate).

  • PDF

Application of Poly (Ethylene Glycol)-Bound NAD in Model Enzyme Reactor

  • Urabe, Itaru
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.510.1-510
    • /
    • 1986
  • Many enzymes require the participation of readily dissociable coenzymes as NAD for thir catalytic activities. The continuous utilization of the enzymes requires the retention and regeneration of the coenzymes. For this purpose, several kinds of macromolecular NAD derivatives have been prepared by covalently attaching NAD to watersoluble polymers. We have prepared poly (ethylene glycol)-bound NAD (PEG-NAD) by coupling N$\^$6/-(2-carboxyethyl)-NAD to one terminal of ${\gamma}$ $\omega$-diaminoly (ethylene glycol) (Mr 3000) with water-soluble carbodiimide. PED-NAD thus obtained has one NAD moiety located at a terminal of the linear, flexible and hydrophilic chain of poly (ethylene glycol). PED-NAD has good coenzyme activity for various dehydrogenases and is applicable in a continuous enzyme reactor. To use these macromolecular NAD derivatives in an enzyme reactor, it si necessary to understand the behavior of the system in which the reactions of dehydrogenases are coupled by the recycling of the NAD derivative. We investigated the kinetic properties of a continuous enzyme reactor containing lactate dehydrogenase, alcohol dehydrogenase and PEG-NAD. The steady-state behavior of the enzyme reactor is explained by a simple kinetic model.

  • PDF

Effect of Imidazole and Surfactant on the Opto-Electrical Properties of PEDOT Thin Films via Vapor Phase Polymerization (이미다졸과 계면활성제가 기상중합법으로 제조된 PEDOT 박막의 광-전기적 특성에 미치는 영향)

  • Khadka, Roshan;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.461-467
    • /
    • 2015
  • This paper reports the combined effects of the triblock copolymer surfactant poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) and imidazole on the opto-electrical and mechanical properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based thin films prepared via vapor phase polymerization (VPP) using ferric p-toluenesulfonate as a catalyst. Various PEDOT-based thin films were synthesized using PEG-PPG-PEG and imidazole alone and in combination to compare and correlate their effects on film properties. The improved conductivity of the PEDOT films was higher than $1300S{\cdot}cm^{-1}$ when the surfactant and imidazole were used together. The PEG-PPG-PEG chain length was also varied to identify the best conditions for the VPP-based preparation of PEDOT thin films.

Improvement of Solar Cell Efficiency by Modification of Cellulose Acetate Propionate for Ag paste (전극용 Ag Paste의 Cellulose Acetate Propionate(CAP) 개질에 따른 태양전지 효율 향상)

  • Kim, Dong Min;Lim, Jong Chan;Kim, Jin Hyun;Cha, Sang-Ho;Lee, Jong-Chan
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.227-234
    • /
    • 2018
  • We investigate the effect of the modification of cellulose acetate propionate as an organic vehicle for silver paste on solar cell efficiency. For the modification of cellulose acetate propionate, poly(ethylene glycol) is introduced to the hydroxyl groups of a cellulose acetate propionate backbone via esterification reaction. The chemical structure and composition of poly(ethylene glycol) functionalized cellulose acetate propionate is characterized by Attenuated total reflectance Fourier transform infrared, $^1H$ nuclear magnetic resonance, differential scanning calorimetry and thermogravimetric analysis. Due to the effect of structural change for poly(ethylene glycol) functionalized cellulose acetate propionate on the viscosity of silver paste, the solar cell efficiency increases from 18.524 % to 18.652 %. In addition, when ethylene carbonate, which has a structure similar to poly(ethylene glycol), is introduced to cellulose acetate propionate via ring opening polymerization, we find that the efficiency of the solar cell increases from 18.524 % to 18.622 %.

The Effect of Temperature and Photoinitiator Concentration on Conversion of Photopolymerized Multiethylene Glycol Dimethacrylate by Photo-DSC (Photo-DSC를 사용한 에틸렌글리콜 단위 길이에 따른 다이메타크릴레이트의 광중합 전환률에 미치는 온도와 광개시제 농도의 영향)

  • Do, Hyun-Sung;Kim, Dae-Jun;Kim, Hyun-Joong;Lee, Young-Kyu
    • Journal of Adhesion and Interface
    • /
    • v.4 no.3
    • /
    • pp.14-20
    • /
    • 2003
  • In order to study the radiation curing behavior of poly(ethylene glycol 400) dimethacrylate and ethylene glycol dimethacrylate, we investigated the influence of temperature and photoinitiator concentration by photo-DSC. As the number of ethylene glycol unit, the concentration of photoinitiator, and the reaction temperature increased, the reaction speed of PEG400DMA and EGDMA increased. Although the reaction speed of PEG400DMA was lower than EGDMA, the overall conversion of PEG400DMA was high.

  • PDF

Antithrombogenicity of the Surfacfe of Poly(r-benzyl L-glutamate)/ Poly(ethylene glycol) Block Copolymer (Poly(r-benzyl L-glutamate)/ poly(ethylene glycol) block 공중합체 표면의 항혈전성에 관한 연구)

  • 조종수;송수창
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.199-204
    • /
    • 1987
  • ABA type block copolymers composed of r benzyle L-glutamate as the A component and poly(ethylene glycol) as the B components were obtained. Platelet adhesion on their sunfaces was investigated by a column elusion method to examine the effects of microdomain and secondary structure. The number of platelets adhered from whole blood and plasma rich platelet was smaller for the block copolymer systems than for the homopolymers. In the block copolymer system, the number of platelets adrered on their surfaces increased with increasing the content of PEG, that is, with decreasing of a-helix of block copolymers. A thick thrombus formation on the PBLG homopolymer was observed than block copolymer by scanning electron micrographs. The platelets adhesion increased with increasing the critical surface tension of the block copolymer.

  • PDF

Effect of Poly(ethylene glycol) dimethyl ether Plasticizer on Ionic Conductivity of Cross-Linked Poly[siloxane-g-oligo(ethylene oxide)] Solid Polymer Electrolytes

  • Kang, Yongku;Seo, Yeon-Ho;Kim, Dong-Wook;Lee, Chang-Jin
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.431-436
    • /
    • 2004
  • Cross-linked network solid polymer electrolytes were prepared by means of in situ hydrosilylation between poly[hydromethylslioxane-g-oligo(ethylene oxide)] and diallyl or triallyl group-containing poly(ethylene glycols). The conductivities of the resulting polymer electrolytes were greatly enhanced upon the addition of poly(ethylene glycol) dimethyl ether (PEGDME) as an ion-conducting plasticizer. Conductivities of the cross-linked polymer electrolytes were more dependent on the molecular weight of PEGDME than on the cross-linkers. The maximum conductivity was found to be 5.6${\times}$10$\^$-4/ S/cm at 30$^{\circ}C$ for the sample containing 75 wt% of PEGDME (M$\_$n/ =400). These electrolytes exhibited electrochemical stability up to 4.5 V against the lithium reference electrode. We observed reversible electrochemical plating/stripping of lithium on the nickel electrode.