• Title/Summary/Keyword: Poly(VDF-co-HFP)

Search Result 5, Processing Time 0.015 seconds

Phase separation Behavior of P(VDF-co-HFP)/PBA and P (VDF-co-HFP)/P(BA-co-BS) Blends (P(VDF-co-HFP)/PBA 및 P(VDF-co-HFP)/P(BA-co-Bs) 블렌드의 상분리 거동)

  • 홍성돈;김영호;김갑진
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.193-194
    • /
    • 2003
  • 전기활성 고분자인 poly(vinylidene fluoride)(PVDF)를 전기 비활성 고분자와 블렌드시키는 경우 어떤 블렌드계에서는 용융 온도 이상에서 LCST(lower critical solution temperature) 상분리 거동을 나타내는데[1,2], 이때 외부 전장을 가해주면 이들의 상분리 거동에 영향을 미칠 수 있다[3]. PVDF와 블렌딩시켰을 때 LCST 상분리 거동을 나타내는 고분자로는 poly(methyl methacrylate), poly(ethyl methacrylate), poly(1,4-butylene adipate) (PBA) 등이 있다[l,3]. (중략)

  • PDF

Crosslinking of Electrospun Poly (VDF-co-HFP) Nanofibrous Membranes by Gamma-ray Irradiation

  • Kim, Yun-Hye;Lim, Youn-Mook;Choi, Jae-Hak;An, Sung-Jun;Park, Jong-Seok;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.105-110
    • /
    • 2008
  • Poly (VDF-co-HFP)/PEGDMA nanofibrous membranes (NFMs) have been prepared by an electrospinning process. Since electrospun NFMs have a nanoporous structure, they have a potential application for a polymer electrolyte or a separator. Poly (VDF-co-HFP) is a polymer electrolyte binder. In order to improve their mechanical properties, poly (VDF-co-HFP)/PEGDMA NFMs were crosslinked by a gamma-ray irradiation. Then the crosslinked NFMs were characterized through an electrolyte uptake, IR structural analysis, and SEM morphological investigation.

Miscibility and Phase Separation Behavior of P(VDF-co-HFP) and Poly(vinyl methyl ketone) Blends (P(VDF-co-HFP)와 poly(vinyl methyl ketone) 블렌드물의 혼화성 및 상분리 거동)

  • 김영호;홍성돈;김갑진
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.319-320
    • /
    • 2003
  • 압전성과 초전성을 나타내는 고분자인 poly(vinylidene fluoride)(PVDF)는 poly(methyl methacrylate), poly(vinyl acetate), 및 Poly(vinyl methyl ketone)(PVMK) 등과 블렌딩하면 혼화성(miscibility)이 있다. 이들 블렌드물들을 용융온도 이상으로 승온시키면 낮은 온도에서는 균일상으로 존재하지만, 온도가 계속 증가하면 상분리되어 LCST(lower critical solution temperature)를 나타낸다[1]. 이러한 승온에 의한 상분리 거동에서 외부전장을 가하면 전기활성 고분자인 PVDF에 영향을 주어 상분리 거동이 변화될 것으로 예산된다. (중략)

  • PDF

Synthesis of Poly(vinylidene fluoride-co-hexafluoropropylene) (비닐리덴 플루오라이드와 헥사플루오르프로필렌 공중합체의 합성)

  • Lee, Sang Goo;Ha, Jong-Wook;Park, In Jun;Lee, Soo-Bok;Lee, Jong Dae
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.74-79
    • /
    • 2013
  • Polyvinylidene fluoride (PVDF) and its copolymer with hexafluoropropylene (HFP) were successfully prepared from free radical solution polymerizations using diisopropyl peroxidicarbonate (DIPPDC) in the presence of 1,1,2-trichlorotrifluoroethane (R-113). The reactivity ratios of VDF and HFP were estimated as$r_{VDF}=2.06{\pm}0.03$ and $r_{HFP}{\approx}0$. This result indicates that HFP cannot undergo self propagation. The weight-average molecular weight and molecular weight distribution of copolymers were found to decrease with increasing HFP content. The melting temperature of copolymers linearly decreased with the increase of HFP content because of the introduction of HFP. Moreover, no melting peak was observed for the copolymers with high HFP content. The glass transition temperature of copolymers gradually increased with the increase of HFP content due to the restricted flexibility of the polymer chains.

Synthesis and Characteristics of Partially Fluorinated Poly(vinylidene fluroide)(PVDF) Cation Exchange Membrane via Direct Sulfonation (직접술폰화반응에 의한 부분불소화 Poly(vinylidene fluroide)(PVDF) 양이온교환막의 합성 및 특성)

  • Kang, Ki Won;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.406-414
    • /
    • 2015
  • In this study, partially fluorinated cation exchange membranes were prepared by direct sulfonation of Poly(VDF-co-hexafluoropropylene) copolymers (PVDF-co-HFP) followed by a casting method for application in the Membrane capacitive deionization (MCDI). The structure of sulfonated PVDF-co-HFP (SPVDF) was confirmed by Fourier-transform infrared (FT-IR) and $^1H$ Nuclear magnetic resonance ($^1H$ NMR) analysis. For quantitative analysis of the chemical composition, the X-ray Photoelectron Spectroscopy (XPS) was used. The membrane properties such as water uptake, ion exchange capacity and electrical resistance were measured. It was suggested that the optimum direct sulfonation condition of PVDF-co-HFP ion exchange membranes was $60^{\circ}C$ and 7 hours for temperature and duration of sulfonation, respectively. The water uptake of the SPVDF ion exchange membrane was 21.5%. The ion exchange capacity and electrical resistance were 0.89 meq/g and $3.70{\Omega}{\cdot}cm^2$, respectively. It was investigated that if it is feasible to apply these membranes in MCDI at various cell potentials (0.9~1.5 V) and initial flow rates (10~40 mL/min). In the MCDI process, the maximum salt removal rate was 62.5% in repeated absorption-desorption cycles.