Monodispersed microparticles with a poly(D,L-lactide-co-glycolide) (PLGA) core and a poly(ethyl 2-cyanoacrylate) (PE2CA) shell were prepared by Shirasu porous glass (SPG) membrane emulsification to reduce the initial burst release of doxorubicin (DOX). Solution mixtures with different weight ratios of PLGA polymer and E2CA monomer were permeated under pressure through an SPG membrane with $1.9\;{\mu}m$ pore size into a continuous water phase with sodium lauryl sulfate as a surfactant. Core-shell structured microparticles were formed by the mechanism of anionic interfacial polymerization of E2CA and precipitation of both polymers. The average diameter of the resulting microparticles with various PLGA:E2CA ratios ranged from 1.42 to $2.73\;{\mu}m$. The morphology and core-shell structure of the microparticles were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The DOX release profiles revealed that the microparticles with an equivalent PLGA:E2CA weight ratio of 1:1 exhibited the optimal condition to reduce the initial burst of DOX. The initial release rate of DOX was dependent on the PLGA:E2CA ratio, and was minimized at a 1:1 ratio.
The polymeric matrices made with poly(D,L-lactide-co-glycolide) were prepared using copolymer of poly(D,L-lactide) and poly(ethylene glycol) for application of drug delivery systems. Catalyst made use of stannous actoate. Particle size were differ greatly$(435.3{\pm}11.2{\sim}2284.1{\pm}188.5)$ that nanoparticle made use of according to solvent of various kinds. Polymer could a sharp distinction with copolymerized among LE-1, LE-2 and LE-3 of PLA and PEG of content that to examine $^1H-NMR$ of copolymer make refine and reprecipitation. Drug delivery effect at PLGA nanoparticle : PLA amount more then proved highly drug delivery amount that each LE-1, LE-2, LE-3, drug and solvent was 40mg, 20mg and 10mg. Drug delivery effect proved higher 20mg that change(10mg, 20mg, 40mg) at drug feeding amount with LE-2. The first a lot of drug proved delivery. LE-3 most lactide content proved much delivery since biodegradable on PLGA copolymer result from lactide. Also biodegradable rate was highest at LE-3 much of lactide content, because influence at biodegradable effect of lactide by inclusive of soft PEG.
To overcome the main disadvantages of non-viral gene delivery systems such as repeated administration due to the low transfection efficiency, poly(D,L-lactide-co-glycolide) was applied to encapsulate pDNA in its microsphere formulation. Free pDNA or various ratios (w/w) of chitosan/pDNA complexes was used for encapsulation, with the resulting encapsulation efficiency of 44%, 5%, and 8% for free pDNA, 0.7:1 and 1:1 ratios, respectively. Scanning electron micrographs of poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres encapsulating pDNA or chitosan-condensed pDNA revealed a smooth spherical shape immediately after microsphere preparation and a collapsed porous shape in 41 days due to the degradation of PLGA. In vitro release profile showed that the 0.7:1 (w/w) ratio formulation exerted 47% release in 26 days, whereas free pDNA or 1:1 (w/w) ratio formulation did only 15% or 32%, respectively.
Carmustine (l,3-bis(2-chloroethyI)-1-nitrosourea, BICNU) used as antineoplastic drug for the treatment of brain tumor is not appropriate for the long term delivery, because it has short biological half life. Therefore, poly(D,L-lactide-co-glycolide) (PLGA) is useful as drug carrier for the long term delivery due to bulk erosion property. Glycolide monomer is applied to release of BICNU owing to non-toxic and monomeric components after biodegradation of PLGA. In this study, BICNU-loaded PLGA wafers with or without glycolide monomer were fabricated by conventional direct compression method for the sustained release of BICNU. These wafers were observed for their release profiles of BICNU and degradation rates by SEM, NMR, and GPC. Furthermore, we make multi-layer wafers and compare them with release profiles of conventional wafer. From these results, drug release of BICNU-loaded PLGA wafers was increased with increasing the glycolid monomer contents. We confirmed that glycolide monomer and BICNU contents in barrier-layer influenced the drug release profiles and degradation rate.
Park, Ju-Young;Nam, Yoon-Sung;Kim, Jun-Oh;Han, Sang-Hoon;Chang, Ih-Seop
Journal of Pharmaceutical Investigation
/
v.34
no.2
/
pp.101-106
/
2004
This work aims at examining the cellular uptake behavior of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles derivatized with a protein transduction domain (PTD) using HeLa cells. For this purpose, $Tat_{49-57}$ peptide derived from transcriptional activation (Tat) protein of HIV type-1 was covalently conjugated to the terminal end of PLGA. Nanoparticles were ten prepared with the $Tat_{49-57}-PLGA$ conjugates by a spontaneous phase inversion method. The prepared particles had a mean diameter of ca. 84 nm, as measured by dynamic light scattering. The interaction of the Tat-PLGA nanoparticles with cells was examined by using confocal laser scanning microscopy. It was found tat Tat-PLGA nanoparticles incubated with HeLa cells could efficiently translocate into cytoplasm, while plain PLGA nanoparticles showed negligible cellular uptake. In addition, even at $4^{\circ}C$ or in the presence of sodium azide significant cellular internalization of Tat-PLGA nanoparticles was still observed. These results indicate that a non-endocytotic translocation mechanism might be involved in the cellular uptake of Tat-PLGA nanoparticles.
1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine) is one of the effective chemotherapeutic agents which has been used clinically for treating malignant glioma. Poly(D,L-lactide-co-glycolide) (PLGA, molecular weight: 20000 g/mole. mole ratio of lactide to glycolide 75 : 15) is a well known biodegradable polymer used as a drug carrier for drug delivery system. In this study, we investigated the BCNU release behaviour of BCNU-loaded PLGA wafers containing poly (N-vinylpyrrolidone) (PVP) or polyethyleneoxide (PEO) and the effect of hydrophilic polymers incoporated in the wafers. BCNU-loaded PLGA microparticles with or without hydrophilic polymers were prepared by a spray drying method and fabricated into wafers by direct compression. Encapsulation efficiency of BCNU-loaded PLGA microparticles containing PVP and PEO was 85 ∼ 97% and crystallinity of BCNU encapsulated in PLGA decreased significantly initial release amount and release rate of BCNU increased with the increasing PVP or PEO amount. Morphological change and mass loss of wafers during the release test were confirmed that hydration and degradation of PLGA would be facilitated with an increase of hydrophilic polymers.
In this study, we prepared core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer with varying graft ratio of PLGA. The synthesis of the DexLG copolymer was confirmed by $^1H$ nuclear magnetic resonance (NMR) spectroscopy. The DexLG copolymer was able to form nanoparticles in water by self-aggregating process, and their particle size was around $50\;nm{\sim}300\;nm$ according to the graft ratio of PLGA. Morphological observations using a transmission electron microscope (TEM) showed that the nanoparticles of the DexLG copolymer have uniformly spherical shapes. From fluorescence probe study using pyrene as a hydrophobic probe, critical association concentration (CAC) values determined from the fluorescence excitation spectra were increased as increase of DS of PLGA. $^1H-NMR$ spectroscopy using $D_2O$ and DMSO approved that DexLG nanoparticles have core-shell structure, i.e. hydrophobic block PLGA consisted inner-core as a drug-incorporating domain and dextran consisted as a hydrated outershell. Drug release rate from DexLG nano-particles became faster in the presence of dextranase in spite of the release rate not being significantly changed at high graft ratio of PLGA. Core-shell type nanoparticles of DexLG copolymer can be used as a colonic drug carrier. In conclusion, size, morphology, and molecular structure of DexLG nanoparticles are available to consider as an oral drug targeting nanoparticles.
The objective of this study was to investigate the effects of sample preparation, HPLC conditions and peak measurement methods upon determining progesterone content of poly-d,l-lactide-co-glycolide microspheres. A series of the microspheres with different formulations was first prepared. To determine their actual drug contents, the microspheres were dissolved in tetrahydrofuran and diluted with various amounts of methanol to precipitate the polymer. After removal of polymeric precipitates, the filtrates were subject to HPLC analysis under versatile experimental conditions. Interestingly, the composition of a sample solution (e.g., the ratio of methanol to tetrahydrofuran) affected the magnitudes of both peak fronting and peak broadening of progesterone. Its peak became broader and more asymmetrical at lower methanol:tetrahydrofuran ratios. Furthermore, its peak height was influenced by the proportion of tetrahydrofuran in a sample solution. Such problems encountered with tetrahydrofuran were exacerbated when a larger volume of the sample solution was injected onto an analytical column. Under our experimental conditions a peak area measurement provided more accurate and reliable determination of progesterone content in various microspheres than a peak height determination. Optimizing the composition of a sample solution, HPLC chromatographic conditions and peak analysis methods was a prerequisite to an accurate determination of progesterone encapsulated within microspheres.
The purpose of this study was to investigate the effect of peptide charge on the interaction between peptide and poly(D,L-lactide-co-glycolide) (PLGA) for evaluating mechanism of acylated peptide formation in PLGA matrix. As a model peptide, octreotide, a synthetic somatostatin analogue and active ingredient of commercial PLGA product, was used. The disulfide group of octreotide was reduced with dithiothreitol and the sulfhydryl groups were modified with N-${\beta}$-maleimidopropionic acid (BMPA) to neutralize octreotide with positive charge in physiological conditions. The BMPA-conjugated octreotide was identified by measuring the molecular mass with liquid chromatography-mass spectrometry. In the interaction study with PLGA, native octreotide showed initial adsorption to PLGA and substantial production of acylated peptides (56% of overall peptide), whereas BMPA-conjugated octreotide showed minimal adsorption to PLGA and no acylation products for 42 days. Consequently, the neutralization of octreotide completely inhibited the peptide acylation by preventing interaction of peptide with PLGA. In conclusion, this study demonstrates that the initial polymer interaction of peptide is important step for peptide acylation in PLGA matrix and suggests the modulation of peptide charge as strategy for inhibiting the formation of acylated peptide impurities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.