• Title/Summary/Keyword: Polonium nuclides

Search Result 2, Processing Time 0.014 seconds

Determination of Polonium Nuclides in a Water Sample with Solvent Extraction Method

  • Lee, M.H.;Lee, C.H.;Song, K.;Kim, C.K.;Martin, P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2488-2492
    • /
    • 2010
  • A method is described for the determination of the Po nuclides in a water sample. After the Po nuclides were purified from interfering elements in a water sample using a manganese dioxide precipitation followed by a solvent extraction method, the Po nuclides were deposited onto the silver plate. A large volume of the water sample was effectively pretreated with manganese dioxide precipitation method. To determine the optimum conditions for plating Po, the effects of the pH, volume, temperature and time on the Po deposition were investigated in hydrochloric acid solution. The investigated determination method of Po nuclides with solvent extraction was applied to a tap water sample.

The Vertical Fluxes of Particles and Radionuclides in the East Sea

  • Moon, Deok-Soo;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • v.35 no.1
    • /
    • pp.16-33
    • /
    • 2000
  • In order to measure the vertical fluxes of particles and reactive radionuclides such as thorium and polonium isotopes, Dunbar-type sediment traps were freely deployed at the Ulleung Basin and in warm and cold water masses around the polar front of the East Sea. We estimated the ratios of the catched (F) to the predicted $^234$Th fluxes (P) using natural tracers pair $^234$Th-$^238$U. The F/P ratios are decreased with increasing water depth. Whereas the concentrations of suspended particles are homogeneous in water column, the mass fluxes are also decreased with increasing water depth like the F/P ratios. These facts indicate that organic matters of settling particles are destructed within the euphotic layer due to decomposition. Whereas regenerations of sinking particles are negligible in the cold water mass, about 80% of them are regenerated in the warm water mass during falling of large particles. These downward mass fluxes are closely correlated with their primary productions in euphotic zone. The activities of $^234$Th, $^228$Th and $^210$Po in the sinking material were increased with water depth. Because $^234$Th steadily produced in the water column are cumulatively adsorbed on the surface of sinking particles, vertical $^234$Th fluxes were observed to increase with water depth. Therefore, these sinking particles play important roles in transporting the particle reactive elements like thorium from surface to the deep sea. The scavenging processes including adsorption and settling reactions generate radio-disequilibrium between daughter and parent nuclides in water column. The activity ratios of $^234$Th/$^238$U and $^228$Th/$^228$Ra were observed to be < 1.0 in the surface water and approached to be equilibrium below the thermocline. The extent of the deficiency of daughter nuclides compared to the parents nuclide was highly correlated with the vertical particle flux. Because most of the $^210$Po in the surface water are scavenged on a labile phase and are recycled at sub-surface depths (< 200 m), the $^210$Po are always observed to be excess activities compared to $^226$Ra in surface water.

  • PDF