• Title/Summary/Keyword: Pollution assessment

Search Result 965, Processing Time 0.025 seconds

Applicability Assessment of Epoxy Resin Reinforced Glass Fiber Composites Through Mechanical Properties in Cryogenic Environment for LNG CCS (에폭시 수지가 적용된 유리섬유 복합재료의 극저온 환경 기계적 특성 분석을 통한 LNG CCS 적용성 평가)

  • Yeom, Dong-Ju;Bang, Seoung-Gil;Jeong, Yeon-Jae;Kim, Hee-Tae;Park, Seong-Bo;Kim, Yong-Tai;Oh, Hoon-Gyu;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.262-270
    • /
    • 2021
  • Consumption of Liquefied Natural Gas (LNG) has increased due to environmental pollution; therefore, the need for LNG carriers can efficiently transport large quantities of LNG, is increased. In various types of LNG Cargo Containment System (CCS), Membrane-type MARK-III composed of composite materials is generally employed in the construction of an LNG carrier. Among composite materials in a Mark-III system, glass-fiber composites act as a secondary barrier to prevent the inner hull structure from leakage of LNG when the primary barrier is damaged. Nevertheless, several cases of damage to the secondary barriers have been reported and if damage occurs, LNG can flow into the inner hull structure, causing a brittle fracture. To prevent those problems, this study conducted the applicability assessment of composite material manufactured by bonding glass-fiber and aluminum with epoxy resin and increasing layer from three-ply (triplex) to five-ply (pentaplex). Tensile tests were performed in five temperature points (25, -20, -70, -120, and -170℃) considering temperature gradient in CCS. Scanning Electron Microscopy (SEM) and Coefficient of Thermal Expansion (CTE) analyses were carried out to evaluate the microstructure and thermos-mechanical properties of the pentaplex. The results showed epoxy resin and increasing layer number contributed to improving the mechanical properties over the whole temperature range.

Identification of Freshwater Fish Species in Korea Using Environmental DNA Technique - From the Experiment at the Freshwater Fish Ecological Learning Center in Yangpyeong, Gyeonggi Do - (환경DNA 기술을 이용한 국내 담수어류종 탐지 가능성 - 경기도 민물고기생태학습관 중심으로 -)

  • Kim, Gawoo;Song, Youngkeun
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study focused on verifying the identification of freshwater fish species in Korea using Environmental DNA (eDNA) technique. The research of DNA is increasing in the field of ecology, since this is more sensitive of identify rather than traditional investigation method. Which is difficult to detect species hidden in water and be easily influenced by diverse factors (sites, bad weather, researchers and so on). We applied the pilot test in aquarium (Freshwater Fish Ecological Learning Center in Yangpyeong, Gyeonggi Do), where freshwater fish species are inhabits. We conducted to sampling and analyzing the sixteen water samples (50 species from 7 orders and 13 families) using MiFish primer set. The results showed that 45 species (90%) was investigated by eDNA. It highlight that eDNA with universal primer is possible to detect freshwater fish species of Korean. However, the errors on species identification seems to be caused by the primer that be not suited perfectly and the pollution such as aquarium, sampling collectors.

Water Quality Similarity Evaluation in Geum River Using Water Quality Monitoring Network Data (물환경측정망 자료를 활용한 금강수계 수질 유사도 평가)

  • Kim, Jeehyun;Chae, Minhee;Yoon, Johee;Seok, Kwangseol
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.75-88
    • /
    • 2021
  • Six locations in the automated monitoring network at the Geum River Basin were selected forthis study. The water quality characteristics at two of the locations in the water quality monitoring network that were identical, or nearby, were examined, and their correlations were evaluated through statistical analysis. The results of the water quality analysis were converted to the water quality index and expressed in grades for comparison. For the data necessary for the study, public data from four years, from 2016-2019 were used and the evaluation parameters were water temperature, pH, EC, DO, TOC, TN, and TP. Results of the analysis showed that the water quality concentrations measured in the automated monitoring network and the water quality monitoring network differed in some measured values, but they tended to register variation in a specified ratio in most of the locations in the network. The analysis of the correlations of the parameters between the two monitoring networks found that water temperature, EC, and DO showed high correlations between the two monitoring networks. The TOC, TN, and TP showed high correlations, with a 0.7 or higher (correlation coefficient r), with the exception of some of the monitoring networks, although their correlations were lower than those of the basic parameters. The water quality index analysis showed that the water quality index values of the automated monitoring network and the water quality monitoring network were similar. The water quality index decreased and the pollution degree increased in the downstream direction, in both networks.

Analysis of the Discharge Characteristics of Non-point Pollutants from the Interception Facilities according to Rainfall Conditions (강우조건에 따른 차집시설에서의 비점오염물질 유출특성분석)

  • Lin, Zi-Yu;Eun, Beomjin;Heo, Jeong Sook;Choi, I Song;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This study was carried out to understand the water quality characteristics of the initial stormwater runoff and the origin of soluble pollutants according to various rainfall conditions from a non-point source reducing facility. The water sample from this study was collected among 10 collection facilities in the G-drainage area. Specifically, five of the collection points including #1, #5, #8, #9, and #10 were reported with unknown water inflow even during non-rain conditions. The leakage characteristics of non-point pollutants from the collection facilities were then able to identify accordingly. The water quality characteristics of the stormwater runoff from the collection facilities were strongly affected by the amounts of rainfalls. The average concentrations of EC, BOD, TOC, and TN during non-rain were found to be higher than their concentrations during rain; on the other hand, the average concentrations of DO were found to be lower than its concentrations during rain. In addition, the distribution of organic components existing in the effluent of collection facilities were identified based on the dissolved organic matter analysis. In summary, the stormwater runoff was highly affected by pollutants flowing from the surrounding environment, and the amounts of hard-to-decompose humic substances were greatly increased in the collection facilities due to rain.

Indoor PM2.5 Concentration Distribution and Health Risk Assessment according to the Implementation of a Seasonal Management System (미세먼지 계절관리제 시행 여부에 따른 실내 PM2.5 농도 분포 및 노출에 따른 건강위해성 평가)

  • Shin-Young Park;Dann-Ki Yoon;Hyeok Jang;Sung Won Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.218-227
    • /
    • 2023
  • Background: Since 2019, the Ministry of Environment has implemented a seasonal fine dust management system from December to March, targeting high PM2.5 levels with the aim of reducing PM2.5 concentrations and protecting public health. The focus of improving the seasonal management system lies in the atmospheric PM2.5 levels. Considering the primary goal of protecting public health, it is necessary to analyze the policy effects from an exposure perspective rather than a concentration-based approach. Objectives: This study aims to quantitatively assess the improvement of indoor PM2.5 levels and the health impacts of the seasonal management system by comparing the periods before and during its implementation in residential environments. Methods: PM2.5 concentrations within residential environments in a metropolitan area were measured using an optical particle counter (IAQ-C7, K-weather, Ltd, Korea) at one-minute intervals during the pre-implementation period (November 21~25, 2022) and during the implementation period (December 19~23, 2022). Based on the measured PM2.5 concentrations, a quantitative evaluation of cancer and mortality risks was conducted according to age and gender. Results: The results of comparing indoor and outdoor PM2.5 concentrations before and during the implementation of the seasonal management system showed a decrease of approximately 56.6% and 47.9%, respectively. Health risk assessments revealed that both the safety-limit-based and safety-target-based Hazard Quotients (HQ) exceeded the threshold of 0.1 for children under 19 years of age, both before and after the implementation. The mortality risk decreased by approximately 47.9% after the implementation, with children aged 0-9 showing the highest mortality risk at 0.9%. Conclusions: The findings of this study confirmed the positive health impacts of the seasonal management system across all age groups, particularly children under 19 who are more vulnerable to fine dust exposure.

Research on Trend Analysis of Ecosystem Water Quality Regulating Services in National Park - Focusing on Odaesan National Park - (국립공원의 수질조절 생태계서비스 가치평가 연구 - 오대산국립공원을 중심으로 -)

  • Gawoo Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.72-82
    • /
    • 2023
  • The purpose of this study is to estimate the trend of ecosystem water quality regulating services in Odaesan National park of the last five years and the corresponding economic values. Recently the climate change makes increased the value of the water, it is more important to protect the source of the riverthan to purify the contaminated water. To evaluate the water quality regulating services, we calculated the difference between purification and pollution from national park and estimated the quantitative value of the water quality regulating services. As a results, the amount of the value of the water quality regulating services from 2017 to 2021 was increased from approximately BOD 128.21 kg/Day, T-P 12.11 kg/Day to BOD 161.38 kg/Day, T-P 13.24 kg/Day and the economic value also increased from 2,304 million won to 2,817 million won.

The Analysis of Future Land Use Change Impact on Hydrology and Water Quality Using SWAT Model (SWAT 모형을 이용한 미래 토지이용변화가 수문 - 수질에 미치는 영향 분석)

  • Park, Jong-Yoon;Lee, Mi Seon;Lee, Yong Jun;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.187-197
    • /
    • 2008
  • This study is to assess the impact of future land use change on hydrology and water quality in Gyungan-cheon watershed ($255.44km^2$) using SWAT (Soil and Water Assessment Tool) model. Using the 5 past Landsat TM (1987, 1991, 1996, 2004) and $ETM^+$ (2001) satellite images, time series of land use map were prepared, and the future land uses (2030, 2060, 2090) were predicted using CA-Markov technique. The 4 years streamflow and water quality data (SS, T-N, T-P) and DEM (Digital Elevation Model), stream network, and soil information (1:25,000) were prepared. The model was calibrated for 2 years (1999 and 2000), and verified for 2 years (2001 and 2002) with averaged Nash and Sutcliffe model efficiency of 0.59 for streamflow and determination coefficient of 0.88, 0.72, 0.68 for Sediment, T-N (Total Nitrogen), T-P (Total Phosphorous) respectively. The 2030, 2060 and 2090 future prediction based on 2004 values showed that the total runoff increased 1.4%, 2.0% and 2.7% for 0.6, 0.8 and 1.1 increase of watershed averaged CN value. For the future Sediment, T-N and T-P based on 2004 values, 51.4%, 5.0% and 11.7% increase in 2030, 70.5%, 8.5% and 16.7% increase in 2060, and 74.9%, 10.9% and 19.9% increase in 2090.

Current Systems in the Adjacent Seas of Jeju Island Using a High-Resolution Regional Ocean Circulation Model (고해상도 해양순환모델을 활용한 제주도 주변해역의 해수유동 특성)

  • Cha, Sang-Chul;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.211-223
    • /
    • 2020
  • With the increasing demand for improved marine environments and safety, greater ability to minimize damages to coastal areas from harmful organisms, ship accidents, oil spills, etc. is required. In this regard, an accurate assessment and understanding of current systems is a crucial step to improve forecasting ability. In this study, we examine spatial and temporal characteristics of current systems in the adjacent seas of Jeju Island using a high-resolution regional ocean circulation model. Our model successfully captures the features of tides and tidal currents observed around Jeju Island. The tide form number calculated from the model result ranges between 0.3 and 0.45 in the adjacent seas of Jeju Island, indicating that the dominant type of tides is a combination of diurnal and semidiurnal, but predominantly semidiurnal. The spatial pattern of tidal current ellipses show that the tidal currents oscillate in a northwest-southeast direction and the rotating direction is clockwise in the adjacent seas of Jeju Island and counterclockwise in the Jeju Strait. Compared to the mean kinetic energy, the contribution of tidal current energy prevails the most parts of the region, but largely decreases in the eastern seas of Jeju Island where the Tsushima Warm Current is dominant. In addition, a Lagrangian particle-tracking experiment conducted suggests that particle trajectories in tidal currents flowing along the coast may differ substantially from the mean current direction. Thus, improving our understanding of tidal currents is essential to forecast the transport of marine pollution and harmful organisms in the adjacent seas of Jeju Island.

Analysis of Sediment Contamination Levels in the Giheung Reservoir (기흥저수지 퇴적물에 대한 오염도 분석)

  • Oh, Kyoung-Hee;Kim, Sung-Jin;Cho, Young-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.26-32
    • /
    • 2018
  • In order to analyze the effects of sediment on the occurrence of algal bloom on the Giheung Reservoir, the contamination levels of sediments were evaluated. The concentrations of various organic compounds (ignition loss), as well as the total nitrogen, total phosphorus, and heavy metals (Zn, Cr, Co, Ni, Pb, As, Hg, Cd) were analyzed in the sediments taken at eighteen sites of the reservoir. The concentrations of ignition loss and total nitrogen tended to increase from upstream to downstream, and ranged from 4.38 to 12.93% and 2,153 to 4,723 mg/kg, respectively. Heavy metals were in the order of Zn>Cr>Co>Ni>Pb>As>Hg, and the contamination level of the heavy metals was not high as a whole. The concentrations of the total phosphorus were in the range of 765 ~ 3,238 mg/kg, which exceeded the contamination level of the "Sediment Quality Assessment Guideline of River and Lake Sediment (Rule No. 2015-687 of the National Institute of Environmental Research, Korea)" at two upstream sites, four downstream sites, and all downstream sites. These results indicated that the pollution level of the total phosphorus, which is the main factor related to algal bloom, was found to be serious. Therefore, it is necessary to establish a countermeasure for sediment management in order to control the algal bloom which occurs periodically in the reservoir.

Development and Prospects of Environmental Health Indicators in Korea (우리나라 환경보건지표 개발현황과 전망)

  • Lee, Young-Mee;Jung, Soon-Won;Choi, Wookhee;Park, Kyung-Hwa;Lee, Chul-Woo;Yu, Seung-Do;Park, Choong-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.5
    • /
    • pp.293-301
    • /
    • 2016
  • Objectives: This paper presents the current development progress of environmental health indicators (EHIs) in the Republic of Korea and discusses the utilization, limitations and prospects of EHIs. Methods: The development process and assessment criteria of EHIs were established based on the DPSEEA (Driving force-Pressure-State-Exposure-Effect-Action) framework with reference to that of the World Health Organization-Europe. In order to explore the applicability of EHIs, a case study was performed to compare the atmospheric environmental health status between the Republic of Korea and European region countries using six indicators. Results: Through the development process, 23 indicators in five areas including air quality, indoor air quality, climate change, chemicals, and water quality were developed, mostly using national statistical data. As a result of the case study comparing environmental health indicators in air quality between the Republic of Korea and Europe, it could be useful to understand the different situation of air pollution source, emission, exposure and health effects. Conclusion: In order for EHIs to compare environmental health status and be used as an environmental health policy development tool for vulnerable areas and related factors, it is necessary to develop further indicators for various issues other than air quality and conduct additional research on their interpretation and related implications, such as policy implementation effects.