• Title/Summary/Keyword: Polluted area

Search Result 411, Processing Time 0.028 seconds

Numerical Simulation of the Formation of Oxygen Deficient Water-masses in Jinhae Bay (진해만의 빈산소 수괴 형성에 관한 수치실험)

  • CHOI Woo-Jeung;PARK Chung-Kill;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.413-433
    • /
    • 1994
  • Jinhae Bay once was a productive area of fisheries. It is, however, now notorious for its red tides; and oxygen deficient water-masses extensively develop at present in summer. Therefore the shellfish production of the bay has been decreasing and mass mortality often occurs. Under these circumstances, the three-dimensional numerical hydrodynamic and the material cycle models, which were developed by the Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the oxygen depletion and also to evaluate the environment capacity for the reception of pollutant loads without dissolved oxygen depletion. In field surveys, oxygen deficient water-masses were formed with concentrations of below 2.0mg/l at the bottom layer in Masan Bay and the western part of Jinhae Bay during the summer. Current directions, computed by the $M_2$ constituent, were mainly toward the western part of Jinhae Bay during flood flows and in opposite directions during ebb flows. Tidal currents velocities during the ebb tide were stronger than that of the flood tide. The comparision between the simulated and observed tidal ellipses showed fairly good agreement. The residual currents, which were obtained by averaging the simulated tidal currents over 1 tidal cycle, showed the presence of counterclockwise eddies in the central part of Jinhae Bay. Density driven currents were generated southward at surface and northward at the bottom in Masan Bay and Jindong Bay, where the fresh water of rivers entered. The material cycle model was calibrated with the data surveyed in the field of the study area from June to July, 1992. The calibrated results are in fairly good agreement with measured values within relative error of $28\%$. The simulated dissolved oxygen distributions of bottom layer were relatively high with the concentration of $6.0{\sim}8.0mg/l$ at the boundaries, but an oxygen deficient water-masses were formed within the concentration of 2.0mg/l at the inner part of Masan Bay and the western part of Jinhae Bay. The results of sensitivity analyses showed that sediment oxygen demand(SOD) was one of the most important influence on the formation of oxygen depletion. Therefore, to control the oxygen deficient water-masses and to conserve the coastal environment, it is an effective method to reduce the SOD by improving the polluted sediment. As the results of simulations, in Masan Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $50\%$ reduction in input COD loads from Masan basin and $70\%$ reduction in SOD was conducted. In the western part of Jinhae Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $95\%$ reduction in SOD and $90\%$ reduction in culturing ground fecal loads was conducted.

  • PDF

Geochemical Characteristics and Heavy Metal Pollutions in the Surface Sediments of Oyster Farms in Goseong Bay, Korea (고성만 굴 양식장 표층퇴적물의 지화학적특성과 중금속 오염에 관한 연구)

  • Kang, Ju-Hyun;Lee, Sang-Jun;Jeong, Woo-Geon;Cho, Sang-Man
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.233-244
    • /
    • 2012
  • Goseong bay, located in southeast sea of Korea with an area of 2,100 ha, is a semi-enclosed bay well-known for oyster farming cultured in an extended range of 148 ha. The objective of this study is to provide the fundamental data in order to manage the effective sea area. A total 26 of surface sediment were collected from Goseong bay to evaluate their sedimentary environment and heavy metals. The loss on Ignition (LOI), C/N ratio, acid volatile sulfide (AVS) and heavy metals were analyzed. loss on ignition (LOI) of surface sediment range from 1.00% to 3.03% (average 2.00%). The carbonate content ranges from 0.52% to 4.29% (average 2.37%). C/N ratio of organic matter showed that most part of organic matter comes from neighboring continent. Acid volatile sulfide (AVS) value of surface sediment from 0.02 mg/g to 1.43 mg/g (average 0.24 mg/g). A ten element of surface sediments (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn) were calculated by enrichment factor (Ef) and the results show that some areas are highly polluted with respect Cu and Hg. The correlation matrix displays the existence of remarkable levels of correlation with both positive and negative values among different variable pairs. LOI and AVS showed both positive values. LOI and AVS values falls under 2% and 1%. Therefore, Goseong bay showed good in quality of sediment.

Characteristics of Variation of Suspended Matters in the Cheju Coastal Area of Korea (제주 연안해역의 부유물질 변화특성)

  • Youn, Jeung-Su;Pyen, Choong-Kyu
    • Journal of Aquaculture
    • /
    • v.5 no.1
    • /
    • pp.93-108
    • /
    • 1992
  • This study was conducted to understand the variation of suspended matters in coastal waters of Cheju Island. Water sampling was carried out at 22 stations along the coast of this island from March 1988 to November 1989. Analyzed and/or observed items were water temperature, salinity, total solids (TS), total dissolved solids (TDS), volatile suspended solids (VSS), and fixed suspended solids (FSS). Inter-relationships between wind velocity, precipitation and total suspended solids (TSS) were also investigated. More windy days prevail in winter season (December, January and February) in Cheju Island. Thirty-six points seven percent of total windy days of a year appeared in this season. The rate of windy days in spring was $27.3\%$ and those in summer and fall were $17.9{\%}$ each. From February to July, the heaviest precipitation was observed in the southeastern area and that from August to January was observed in the eastern part of this island. TS and TDS were firmly related with the fluctuation of salinity. Therefore, there were higher in spring and lower in summer. The highest TSS (7.73 $mg/{\ell}$) was observed in February and was the lowest (4.73 $mg/{\ell}$) in September. Annual mean value of TSS was 6.3$mg/{\ell}$. The highest VSS (2.03 $mg/{\ell}$) was observed in July and lowest (1.42 $mg/{\ell}$) in September. The percentage of VSS per 755 was $30.6{\%}$ in average that was not much higher level compared to the other polluted areas. This value became higher in summer (av. $34.17{\%}$) and lower in winter (av. $24.2{\%}$). Fluctuation of TSS was mainly related with the freshwate. discharge, tidal action, and re-suspension of bottom sediments by the wind waves. Therefore, TSS concentration was low in summer and hish in winter.

  • PDF

Impacts of Impoundments by Low-head and Large Dams on Benthic Macroinvertebrate Communities in Korean Streams and Rivers (소형 보와 대형 댐에 의해 형성된 저수역이 저서성 대형무척추동물 군집에 미치는 영향)

  • Kil, Hye-Kyung;Kim, Dong-Gun;Jung, Sang-Woo;Jin, Young-Hun;Hwang, Jeong-Mi;Bae, Kyung-Seok;Bae, Yeon-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.190-198
    • /
    • 2010
  • This study was conducted to examine the effects of dams on benthic macroinvertebrate communities in Korean streams and rivers. Four low-head dams and three large dams were studied throughout South Korea. Sampling was taken at immediately upper (impoundment), lower (riffle area), and control (riffle area) sites from the dams during 2004-2007. The upper sites, of which substrate heterogeneity and velocity were relatively low, showed a lower degree of species richness, density, and diversity indices, which is very different from the lower and control sites. Heavily polluted streams showed a lesser degree of community differences between the upper and lower sites. In the large dams, the upper and lower sites showed very low values of species diversity indices and very high values of dominance indices compared to the control sites. In the low-head dams, however, the difference of degree of the values was relatively smaller. Compositions of the functional feeding groups and the habitat orientation groups were relatively simpler at the upper sites than at the lower sites and the degree of difference was greater in the large dams. Species richness and community indices of benthic macroinvertebrates were more significantly affected by habitat characteristics than water quality at the upper sites; however, those were more significantly related with water quality at the lower sites. In conclusion, large and low-head dams could simplify stream habitats particularly at the upper sites (impoundment), and they negatively affected on the benthic macroinvertebrate communities inhabited the habitats. The impact was larger in the large dams than in the low-head dams.

An Ecological Study on the Wetlands in Haman Area (함안지역 습지에 대한 생태학적 연구)

  • Cheong, Seon-Woo;Kim, In-Taek;Seo, Jeoung-Yoon;Park, Joong-Suk;Oh, Kyung-Hwan;Lee, Chan-Won
    • Journal of Wetlands Research
    • /
    • v.5 no.2
    • /
    • pp.15-32
    • /
    • 2003
  • The ecological study on seven wetlands of Haman area in Kyungsangnamdo, Korea, was carried out. In especial, the biological data of the sites were unknown. In this study, water quality including water temperature, pH, DO, COD, T-N, T-P, SS were tested. On the survey of plants and animals, vegetation and flora were investigated and the fauna of insects, fish, and amphibians were studied on each wetland. Water of wetland Oksu was heavily polluted and wetlands Pyungy and Dodulyangy were relatively clean. The water pollution was most severe in winter at all of the wetlands. Plant communities were classified into 9 natural communities and 1 artificial community. On the vegetation, wetland Sugok showed the highest plant taxa, and 41 families, 78 species and 16 varieties were classified. There was remarkable difference in number of plant taxa. The difference may be caused by the variances of wetland sizes, the influence from terrestrial environment. Wetland Sugok showed most rich insect fauna, and 10 orders, 76 families 224 species and 1082 individuals were identified. The species diversity was 2.05 and the species richness was 73.49. Wetland Ddun showed poor insect fauna, and 6 orders, 23 families, 29 species and 81 individuals were identified. Total collected fish were 4 orders, 7 families and 11 species. The fish fauna was most rich in wetlands Oksu and Pyungy, but poor in wetland Unan. Total collected amphibians were 2 orders, 3 families and 4 species.

  • PDF

Change in Water Quality on Upper Stream of Mankyeong River (만경강 상류 지역 수질의 시기별 변화)

  • Moon, Young-Hee;Park, Jong-Min;Son, Jae-Gwon;Kim, Kea-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.252-257
    • /
    • 2001
  • To get the basic information for the water quality improvement and control of water resource at Mankyeong river stream, the water quality in four site of main stream and three site of branch stream at the upper stream were investigated mainly from February to August in 2000. The water temperature was affected by depth, flow rate of the water, and air temperature, and ranged 6.4 to $30.8^{\circ}C$. The pH, DO and BOD values of the water was $5.9{\sim}9.7$, $4.6{\sim}14.50\;mg/L$, and $0.1{\sim}11.8\;mg/L$ range, respectively. The content of total nitrogen, $NO_3-N$ and $NH_4-N$ was $1.19{\sim}10.61\;mg/L$, $1.00{\sim}5.93\;mg/L$, and ND $(non\;detected){\sim}2.79$ mg/L, respectively. The concentration of total phosphorus was ND to 1.14 mg/L. The concentration of Cl ion was $3.5{\sim}196.4\;mg/L$. The content of Fe and Mn was $0.002{\sim}0.100\;mg/L$ and $ND{\sim}0.04\;mg/L$, respectively. The contents of heavy metal Cd, Cu, and Zn were $ND{\sim}0.03\;mg/L$, $ND{\sim}0.05\;mg/L$, and $0.001{\sim}0.17\;mg/L$, respectively. Pb was not detected in all the samples. The pH, total nitrogen contents, and total phosphorus content were frequently exceeded the water quality standard for agriculture. The degree of water pollution was very varied by the sampling place. The water quality was generally polluted in the dry season more than in rainy season. The highest level of water pollution observed in the area of Samyea Bridge among the 7 sites.

  • PDF

A Study on the Floating Island for Water Quality Improvement of a Reservoir (저수지 수질개선을 위한 인공식물섬 조성에 관한 연구)

  • Lee, Kwang-Sik;Jang, Jeong-Ryeol;Kim, Young-Kyeong;Park, Byung-Heun
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.77-82
    • /
    • 1999
  • Three floating islands have been constructed for water quality improvement for a polluted irrigation reservoir. Each floating island consists of 10 segments. Each segment hay an area of $16m^2$(4×4m) and is made of wood frames and floats(polystyrene foam). We planted three species of aquatic macrophytes(Typha angustifolia, Zizania latifolia, and Phragmites australis) in floating island on June, 1998. They grew very well without death. We would like to evaluate Phragmites australis is the most suitable aquatic macrophyte that could be planted in a floating island because it maintained the best balance of its root and shoot among them. During their grown period, net primary productivity of Typha angustifolia was $962gDM/m^2$, Zizania latifolia was $1,115gDM/m^2$, and Phragmites australis was $523gDM/m^2$. From these data, it would be estimated to 5.0Kg uptake of nitrogen by aquatic macrophytes and phosphorus 0.8Kg in 3 floating islands. The floating islands worked well as a habitat of fish and prawns. Many kinds of insect lived on the floating islands. The floating island has not only the function of water quality treatment but also several advantages: improvement of landscape and species diversity; low cost of maintenance; low technology; unnecessary of energy; less susceptible to variations in pollutant loading. It could be evaluated a good measure of water quality improvement for an irrigation reservoir. However, it should be intensively studied to develop more light, strong, durable and low-priced frames for efficient floating islands.

  • PDF

Environmental Assessment of the Shihwa Lake by using the Benthic Pollution Index (저서오염지수(BPI)를 이용한 시화호 환경평가)

  • Lee, Jae-Hac;Park, Ja-Yang;Lee, Hyung-Gon;Park, Heung-Sik;Kim, Dong-Sung
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.183-200
    • /
    • 2003
  • In order to assess the ecological changes induced by organic pollutants of the Shihwa Lake, BPI (Benthic Pollution Index) based on the benthic faunal community was employed. It was modified from Infaunal Trophic Index (ITI), and recommended as a pollution detecting method for the environmental assessment. The BPI values were calculated from the benthos data, which were collected for three terms: in 1980, before the Shihwa Lake was built up; in 1994-1997, which the Shihwa Lake was completely isolated from the outer seawater; in 1997-1999, after inflow of the outer seawater. Since the Shihwa Dike was constructed in February 1994, the pollution intensity of the lake had been increased from the narrow and inner part of the former Gyeonggi Bay and spread fast along the coast line of the Shihwa Lake. Then, in 1996 it showed the very high BPI levels all around the Lake. This serious polluted condition had been lasted till 1997, when the inflow of the seawater was begun. In 1998, from the nearest part of the Shihwa Gate, the BPI levels gradually became low in most area of the Lake, except its inner and narrow part. These greatly lowered BPI levels mean that the seawater inflow could be assumed to affect positively in the lake. Furthermore, BPI gave the same results from the other environmental assessment based on the abundance and the species richness of macrobenthic community. It shows that BPI could be useful as an effective method to assess the marine environment and evaluate the status of environmental conditions.

Distribution and Pollution Assessment of Trace Metals in Core Sediments from the Artificial Lake Shihwa, Korea (시화호 코어 퇴적물 내 미량금속 분포 특성 및 오염 평가)

  • Ra, Kongtae;Kim, Eun-Soo;Kim, Joung-Keun;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Eu-Yeol
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.69-83
    • /
    • 2013
  • Metal concentrations in creek water, sewer outlets and core sediments were analyzed to identify the potential origin of metal pollution and to evaluate the extent of metal pollution and potential toxicity of Lake Shihwa. Mean concentrations for dissolved metals in creek water and sewer outlets were 1.6~136 times higher than those in the surface seawater of Lake Shihwa. Metal concentrations in creek water from an industrial region were also higher than those from municipal and agricultural regions, indicating that the potential source of metal pollution in the study area might be mainly due to industrial activities. The vertical profiles of metals in core sediments showed an increasing trend toward the upper sediments. Extremely higher concentrations of metals were observed in the vicinity of Banweol industrial complex. The results of a geo-accumulation index indicated that Cu, Zn and Cd were highly polluted. By comparing the sediment quality guidelines such as TEL and PEL, six metals such as Cr, Ni, Cu, Zn, Cd and Pb levels in core sediments nearby industrial complex exceeded the PEL value. Mean PEL quotient (mPELQ) was used to integrate the estimate of potential toxicity for measured metals in the present study. Mean PELQs in core sediments from Lake Shihwa ranged from 0.2~2.3, indicating that benthic organisms nearby the industrial complex may have been adversely affected.

DISTRIBUTION OF SOME CHEMICAL POLLUTANTS IN SUYEONG BAY (수영만 인근해수의 오탁분포에 대하여)

  • WON Jong-Hun;LEE Bae-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.87-94
    • /
    • 1979
  • In order to study the water pollution in Suyeong Bay, Busan, some chemical constituents were determined at 25 stations in the neap tides on 9 Aug. 1977 and spring tides on 30 Aug. 1977. Range and mean values of the constituents in the spring tides are as follows: $pH\;6.54\~8.06,\;7.54;$ electrical conductivity $0.413\~0.481\times10^5\;\mu\mho/cm,\;0.467\times10^5\;\mu\mho/cm;\;transparency\;0.2\~5.5m,\;2.2m;$ turbidity $1\~60ppm$, 14ppm, chlorosity $15.20\~18.11g/\ell,\;17.67g/\ell;$ fluoride ion $0.94\~1.03ppm$, 0.99ppm; dissolved oxygen $0.17\~7.60ppm$, 4.77ppm; sulfide $0\~0.46ppm$, 0.07ppm; chemical oxygen demand $1.20\~40.74ppm$, 6.11ppm; ammonia-nitrogen $0.060\~0.520ppm$, 0.180ppm; nitrite-nitrogen $0.001\~0.026ppm$, 0.009ppm; nitrate-nitrogen $0\~0.037ppm$, 0.014ppm; phosphate-phosphorus $0.002\~0.261ppm$, 0.050ppm; n-Hexane soluble $0.5\~5.4ppm$, 2.1ppm ; iron $1.0\~104.11\;ppb$, 24.15ppb ; copper $0\~27.45ppb$, 4.19ppb; lead $0\~2.50ppb$, 0.92ppb; zinc $0\~5.15ppb$, 1.47ppb ; cadmium $0\~0.26ppb$, 0.04ppb; and mercury $0.05\~0.37ppb$, 0.11ppb respectively. The variations of the contents of the chemical constituents in the spring tides were larger than in the neap tides. The contents of COD, sulfide, nutrient salts and heavy metals were the highest in the estuary of Suyeong River, and decreased in order of off Kwangan-Ri region, outer Bay and off Haeun-Dae region. The water quality in Suyeong Bay was particularly shown that the concentrations of COO, iron, copper and mercury were higher than those of other coastal aseas and deficiency in dissolved oxygen was observed in some parte of Suyeong Bay. In consideration of the relationship between the chlorosity and the concentrations of nutrient salts, COD and total heavy metals, water pollution of this area is considered due to the inflow of Suyeong River which was extremely polluted by sewage and industrial wastewaters.

  • PDF