• 제목/요약/키워드: Polluted air

검색결과 216건 처리시간 0.024초

대기오염지역과 비오염지역 강우의 이온특성 (characteristic of Ions in Rainwater at Air Polluted and Non-POLLUTED aREA)

  • 김종갑
    • The Korean Journal of Ecology
    • /
    • 제21권3호
    • /
    • pp.195-201
    • /
    • 1998
  • This study was carried out to investigate characteristic of ions in rainwater by throughfall, stemflow and rainfall at air polluted area(Kure city industrial city) and non-air polluted area (Higashihiroshima city non industrial city). pH of rainwater in air polluted area were all low as compared with those in non-air polluted area. EC of rainwater in ir polluted area were high in throughfall and stemflow, but there was no difference between both areas in rainfall. The concentration of major ions in rainwater were generally high at air polluted area, especially of $Mg^{2+}$, $Ca^{2+}$, $Cl^{-}$ and $SO_4^{2-}$ in stemflow. But there was little difference in $NH_4^{+}$, and there was also cases had a high concentration in non-air polluted area. By comparison with forest type, in stemflow concentration of ions in coniferous forest were higher than those in broad-leaved, but in throughfall they were higher in mixed forest rather than coniferous forest. There was no correlation between the amount of rainwater and pH, and also EC. $NO_4^{-}$ and $SO_{4}^{2-}$ had high correlations between major ions besides $Na^{+}$ and $NH_{4}^{+}$ in air poluted area.

  • PDF

Flow Characteristics of Polluted Air in a Rectangular Tunnel using PIV and CFD

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.609-617
    • /
    • 2012
  • The flow characteristics of polluted air are analysed by comparing the results obtained from PIV(Particle Image Velocimetry) experiment and CFD(Computational Fluid Dynamics) commercial code. In order to simulate the polluted air flow, the olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}m^2/s$. The investigation has done in the range of Reynolds numbers of 870, 1730 and 2890 due to the inlet flow velocities of 0.3, 0.6, and 1.0 m/s, respectively. The average velocity and the pressure distributions are comparatively discussed with respect to the three different Reynolds numbers. The results show that the outlet flow rates at three different Reynolds numbers are equivalent of 165 to 167 percent of the inlet ones. The pressure drop occurs in the model closed at both end sides and the highest pressures at each Reynolds number are positioned at the top of the tunnel between the inlet and outlet.

철도차량 객차내 오염물질의 분포경향에 관한 전산해석 (Distribution of Pollutant on the Indoor Air of Passenger Car)

  • 소진섭;전철균;박찬수;최주석
    • 한국연소학회지
    • /
    • 제8권2호
    • /
    • pp.7-16
    • /
    • 2003
  • The transfer of air pollutants between passenger room and service room in train are investigated by the computational analysis. The effects of service room temperature, inlet velocity, initial concentration and heating are studied. The flow induced by the difference of density between two rooms is found to take the major role in transfer of polluted air. Low temperature of service room enhances the polluted air flow into passenger room along the floor. Exhaust fan above the door between two rooms is not effective for this case. Strong inlet flow is found to suppress polluted air flow from service room. The heating of passenger room can promote air pollution.

  • PDF

쾌적 환경을 위한 상용차용 스마트 AQS 개발 (Development of Smart AQS for Commercial Vehicle for Satisfying Agreeable Environment)

  • 김만호;이동헌;이석;이경창
    • 제어로봇시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.496-501
    • /
    • 2008
  • Recently, many automotive companies tend to apply an air quality system (AQS), which prevents polluted air such as smoke or dust by controlling air intake actuator of vehicle, to satisfy the consumer's need for agreeable in-vehicle environment. However, performance of the traditional AQS is not satisfactory because a polluted air may enter into the inside of vehicle through the breaks of windows. Especially, the commercial vehicles such as bus or truck need to be prevented polluted air from the breaks of vehicle. Hence, as an alternative to the traditional AQS, this paper presents the architecture of smart AQS for commercial vehicle and implementation of the smart AQS. Also, the performance of the suggested system is evaluated through an experimental testbed.

흡입관 주위에 형성된 공기차단막이 흡입성능에 미치는 영향 (Effect of the Suction Performance by the Air-Curtain Blowing around a Suction Duct)

  • 조종현;김재실;조수용
    • 한국유체기계학회 논문집
    • /
    • 제12권5호
    • /
    • pp.25-32
    • /
    • 2009
  • A study is conducted to improve the suction performance on suction devices which are used to remove polluted air generated by welding or machining process in a spacious working place of industry. Air-curtain is applied around the inlet of suction duct to interrupt the inflow of fresh air from the downstream region where is located opposite to the polluted air source. Two different air-curtain devices, such as a $45^{\circ}$ backward and a fully backward, are adopted. Suction region is experimentally investigated by measuring the suction velocities using a hot-wire anemometer. Contours of the suction velocity are compared with the computed results. The suction condition is selected to 110,000 Reynolds number which is widely used on typical suction devices, and a width of blowing passage for creating the air-curtain is chosen to 9.38% of the suction duct diameter. The experimental results show that the suction performance obtained with the $45^{\circ}$ backward air-curtain was better than that obtained with the fully backward air-curtain. On the suction duct using the $45^{\circ}$ backward air-curtain, the suction region estimated on basis of the 0.4m/sec is improved by 66% at the same input power.

Experimental and CFD Simulations of Polluted Air Behavior in Rectangular Tunnels

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.608-615
    • /
    • 2011
  • The objective of this study is to investigate the flow characteristics of polluted air behavior in rectangular tunnels using a PIV system and a commercial CFD program. The PIV experiments are simulated by using the olive oil as the tracer particles in scaled rectangular tunnels. Each model has one of four different outlet vents, each dimensionless L/H ratio of which is 0, 0.375, 0.75 and 1.125, respectively as the locations of each outlet are away from the vertical centerline through the inlet. A commercial CFD program, ANSYS CFX, was used to examine the velocity fields and the pressure distributions in numerical simulations. The kinematic viscosity of the air flow of $1.51{\times}10^{-5}m^2/s$ and the flow velocity of 0.3 m/s at the inlet are given under the same conditions in order to analyze the polluted air flow characteristics experimentally and computationally. This study is considered to examine the effect of the outlet locations in the naturally ventilated tunnel models.

인접 터널로부터의 재유입을 고려한 터널 내 소요환기량 산정 연구 (A Study of Ventilation Requirements for Tunnel Considering Recirculation near Tunnel Portals)

  • 이동호;최백열;윤성욱
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.66-70
    • /
    • 2010
  • This paper analyzes difference between current tunnel ventilation calculation method and advanced one which considers effects of polluted air recirculation near tunnel portals. For the calculation, CFD(Computational fluid dynamics) technique was utilized. From the result, it was found that 4.38% more fresh air is required when there is polluted air recirculation near tunnel portal areas. Hence, it is recommanded that the consideration of polluted air recirculation should be made when deciding the ventilation requirements for tunnel.

Water Deficit of Pitch Pines Caused by Superficial Rooting and Air Pollutants in Seoul and Its Vicinity

  • Joon-Ho kim;Rhyu, Tae-Cheol
    • Journal of Plant Biology
    • /
    • 제37권3호
    • /
    • pp.309-316
    • /
    • 1994
  • To make regional comparisons of water status of pitch pine, the temporal changes of water status in pitch pine were investigated at different areas; urban Seoul (heavily polluted area), surburb of Seoul (lightly polluted area), and rural area (control). The effects of air pollutants, acid rain and chemical properties of soil on water deficit in pitch pine were also investiaged. Water content of needles growing at polluted areas were usually lower than that at unpolluted area. Water saturation deficit of needles growing at polluted areas were usually higher than that at unpolluted area especially in dry season. These results indicated that water in needles growing at polluted areas were usually more deficient than that at unpolluted area, and were more deficient in April than other months. At polluted areas, the older the needles were, the more quickly transpirated the water in the needle was. At unpolluted areas, however, water in old needles was not so quickly transpirated as those at polluted areas. Water potential of needles of pitch pine seedlings treated with simulated acid rain (SAR) of pH 3.5 decreased more quickly than that of needles treated with SAR of pH 5.6. Loss of water through epicuticular layer was greater in the following order: magnesium deficiency+100 $\mu$M aluminium>100$\mu$M aluminium>magnesium deficiency>control. In addition to Mg deficiency and Al toxicity, growth decline of pitch pine widely occurring in polluated Seoul could to a large extent be due to cuticle degredation and abnormal vertical distribution of fine roots, which lead to water stress, particularly in dry seasons.

  • PDF

질소산화물(NOx)을 흡착 $\cdot$ 제거하는 건축재료의 개발에 관한 실험 연구 (An Experimental Study on Development of Building Materials with Abosorbable and Eliminatory NOx.)

  • 박준영;김현우;정봉원;최영준;김화중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.959-964
    • /
    • 2001
  • In general, Ti$O_{2}$ photocatalysts have the strong oxidizing power under intense UV light irradiation. The strong oxidizing power of Ti$O_{2}$ photocatalysts are able to purify polluted air. Therefore, we intend to develop building materials with abosorbable and eliminatory NOx. In this study we used two types of Ti$O_{2}$ photocatalysts which are widely used as photocatalysts. As a result, we conclude that building material using Ti$O_{2}$ photocatalysts are able to purify polluted air.

  • PDF

A Study on Flow Characteristics of Polluted Air in Rectangular Tunnel Models Using a PIV System

  • Koh, Young-Ha;Park, Sang-Kyoo;Yang, Hei-Cheon;Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.825-832
    • /
    • 2010
  • The objective of this study is to investigate flow behaviors of polluted air in order to prevent the impact of disaster in a tunnel. This paper presents the experimental results qualitatively in terms of flow characteristics in two kinds of rectangular tunnel models in which each distance from the centerline above the inlet vent to the exhaust vent is 0 and 60 mm, respectively. The olive oil is used as the tracer particles. The flow is tested at the flow rate of $14.16{\times}10^{-4}\;m^3/s$ and the inlet vent velocity of 1.1 m/s with the kinematic viscosity of air. The aspect ratio of the model test section is 10. The average velocity vectors, streamlines, and vorticity distributions are measured and analyzed by the Flow Manager in a particle image velocimetry(PIV) system. The PIV technology gives three different velocity distributions according to observational points of view for understanding the polluted air flow characteristics. The maximum value of mean velocity generally occurs in the inlet and outlet vent regions in the tunnel models.