• Title/Summary/Keyword: Pollutants Dispersion

Search Result 151, Processing Time 0.029 seconds

Investigation of Dispersion and Storage Processes of Pollutants in Natural Streams (자연하천에서 오염물질의 확산 및 저장에 관한 연구)

  • 서일원;유대영
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.107-118
    • /
    • 1995
  • Mathematical models have been developed in which storage-relaease processes of pollutants are modeled to explain storage effect of variations of flow and channel geometry on mixing and transport of polluted releases in natural channels including low flow conditions. The models were tested by using the laboratory dispersion data. Comparisons between concentration-time curves predicted by using the proposed model incorporating two different submodels show that Storage-Diffusion Model seems to be superior in explaining physical processes inside the storage zone to the Storage-Exchange Model even though accuracies of simulation results by two models are about the same. The proposed model shows significant improvement over the conventional one-dimensional dispersion model in predicting natural mixing processes in open channels.

  • PDF

Lagrangian Particle Model for Dense Gas Dispersion (고밀도 가스 확산 예측을 위한 라그란지안 입자 모델)

  • Ko, S.;Lee, C.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.899-904
    • /
    • 2003
  • A new model for dense gas dispersion is formulated within the Lagrangian framework. In several accidental released situations, denser-than-air vapour clouds are formed which exhibit dispersion behavior markedly different from that observed for passive atmospheric pollutants. For relevant prediction of dense gas dispersion, the gravity and entrainment effects need to implemented. The model deals with negative buoyancy which is affected by gravity. Also, the model is subjected to entrainment. The mean downward motion of each particle was accounted for by considering the Langevin equation with buoyancy correction term.

  • PDF

The Real -Time Dispersion Modeling System

  • Koo, Youn-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E4
    • /
    • pp.215-221
    • /
    • 2002
  • The real-time modeling system, named AirWatch System, has been developed to evaluate the environmental impact from a large source. It consists of stack TMS (TeleMetering System) that measures the emission data from the source, AWS (Automatic Weather Station) that monitors the weather data and computer system with the dispersion modeling software. The modeling theories used in the system are Gaussian plume and puff models. The Gaussian plume model is used for the dispersion in the simple terrain with a point meteorological data while the puff model is for the dispersion in complex terrain with three dimensional wind fields. The AirWatch System predicts the impact of the emitted pollutants from the large source on the near-by environment on the real -time base and the alarm is issued to control the emission rate if the calculated concentrations exceed the modeling significance level.

A Study on the Characteristics of Flow and Reactive Pollutants' Dispersion in Step-up Street Canyons Using a CFD Model (CFD 모델을 이용한 체승 도시협곡의 흐름과 반응성 대기오염물질 확산 특성 연구)

  • Kim, Eun-Ryoung;Park, Rokjin J.;Lee, Dae-Geun;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.473-482
    • /
    • 2015
  • In this study, street canyons with a higher downwind building (so called, step-up street canyons) are considered for understanding characteristics of flow and reactive pollutants' dispersion as a basic step to understand the characteristics in wider urban areas. This study used a CFD_NIMR_SNU coupled to a chemistry module just including simple $NO_X-O_3$ photochemical reactions. First, flow characteristics are analyzed in step-up street canyons with four aspect ratios (0.33, 0.47, 0.6, 0.73) defined as ratios of upwind building heights to downwind building height. The CFD_NIMR_SNU reproduced very well the main features (that is, vortices in the street canyons) which appeared in the wind-tunnel experiment. Wind speed within the street canyons became weak as the aspect ratio increased, because volume of flow incoming over the upwind building decreased. For each step-up street canyon, chemistry transport model was integrated up to 3600 s with the time step of 0.5 s. The distribution patterns of $NO_X$ and $O_3$ were largely dependent on the mean flow patterns, however, $NO_X$ and $O_3$ concentrations were partly affected by photochemical reactions. $O_3$ concentration near the upwind lower region of the street canyons was much lower than background concentration, because there was much reduction in $O_3$ concentration due to NO titration there. Total amount of $NO_X$ in the street canyons increased with the aspect ratio, resulting from the decrease of mean wind intensity.

Dispersion of Air Pollutants from Ship Based Sources in Incheon Port (인천항의 선박오염원에서 배출된 대기오염물질의 확산)

  • Kim, Kwang-Ho;Kwon, Byung Hyuk;Kim, Min-Seong;Lee, Don-Chool
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.488-496
    • /
    • 2017
  • Emissions of pollutants from ship-based sources are controlled by the International Maritime Organization (IMO). Since pollutants emitted from ship may be dispersed to the land, controlling emissions from ships is necessary for efficient air quality management in Incheon, where exposure to ship-based pollution is frequent. It has been noted that the ratios of air pollutant emissions from coastal areas to inland areas are about 14% for NOx and 10% for SOx. The air quality of coastal urban areas is influenced by the number of ships present and the dispersion pattern of the pollutants released depending on the local circulation system. In this study, the dispersion of pollutants from ship-based sources was analyzed using the numerical California Puff Model (CALPUFF) based on a meteorological field established using the Weather Research and Forecasting Model (WRF). Air pollutant dispersion modeling around coastal urban regions such as Incheon should consider point and line sources emitted from both anchored and running ships, respectively. The total average NOx emissions from 82-84 ships were 6.2 g/s and 6.8 g/s, entering and leaving, respectively. The total average SOx emissions from 82-84 ships, entering and leaving, were 3.6 g/s and 5.1 g/s, respectively. The total average emissions for NOx and SOx from anchored ships were 0.77 g/s and 1.93 g/s, respectively. Due to the influence of breezes from over land, the transport of pollutants from Incheon Port to inland areas was suppressed, and the concentration of NOx and SOx inland were temporarily reduced. NOx and SOx were diffused inland by the sea breeze, and the concentration of NOx and SOx gradually increased inland. The concentration of pollutants in the area adjacent to Incheon Port was more influenced by anchored ship in the port than sea breezes. We expect this study to be useful for setting emission standards and devising air quality policies in coastal urban regions.

A Review of Scientific Evidence on Indoor Air of School Building: Pollutants, Sources, Health Effects and Management

  • Chithra, V.S;Shiva, Nagendra S.M
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.87-108
    • /
    • 2018
  • Schools are one of the critical social infrastructures in a society, the first place for social activity and the most important indoor environment for children besides the home. Poor IAQ in classrooms can increase the chance of long-term and short-term health problems for students and staffs; affects productivity of teachers; and degrade the student learning environment and comfort levels. The primary objective of this paper is to review and summarize available scientific evidence on indoor air quality of schools and related health effects in children. It was found that the indoor air pollutant levels in school buildings varied over a wide range in different parts of the world depending on site characteristics, climatic conditions, outdoor pollution levels, occupant activities, ventilation type and building practices. Among the indoor air pollutants, particulate matter concentrations were found to be very high in many schools. Outdoor pollutant sources also play a major role in affecting the IAQ of the school building. Hence, scientific knowledge on sources of indoor pollutants, quantification of emissions, temporal and spatial dispersion of pollutants, toxicological properties, chemical and morphological characteristics of the pollutants and associated health risk among children in the school buildings are essential to evaluate the adequacy and cost effectiveness of control strategies for mitigating the IAQ issues.

Modeling and Evaluation on the Dispersion of Air Pollutants in the Large Scale Thermal Power Plant (대단위발전소의 대기오염물질 확산에 관한 모델링 및 평가에 관한 연구)

  • Chun, Sang-Ki;Lee, Sung-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.81-92
    • /
    • 1997
  • This paper presents the results from the comparison analysis and evaluation between the air pollutant dispersion modeling results and the observation data in the area within a 10 km radius from the Boryong thermal power plants. The observation data used in this study were the air pollutant concentrations which had been continuously measured from 8 locations around the Boryong power plants by TMS(tele-monitoring system) for 3 months from September to November, 1996. The short-term and long-term predictions were carried out using ISC3 model and LPDM(Lagrangian Panicle Dispersion Model). The results of ISC3 modeling in a short-term showed highly as 0.7 in a correlation coefficient, but in a long-term showed just 0.54. On the other hand, LPDM showed 0.78 in a correlation coefficient for a long-term, but in a short-term showed highly value than the observation concentrations.

  • PDF

Development of tracer concentration analysis method using drone-based spatio-temporal hyperspectral image and RGB image (드론기반 시공간 초분광영상 및 RGB영상을 활용한 추적자 농도분석 기법 개발)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun;Han, Eunjin;Kwon, Siyoon;Kim, Youngdo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.623-634
    • /
    • 2022
  • Due to river maintenance projects such as the creation of hydrophilic areas around rivers and the Four Rivers Project, the flow characteristics of rivers are continuously changing, and the risk of water quality accidents due to the inflow of various pollutants is increasing. In the event of a water quality accident, it is necessary to minimize the effect on the downstream side by predicting the concentration and arrival time of pollutants in consideration of the flow characteristics of the river. In order to track the behavior of these pollutants, it is necessary to calculate the diffusion coefficient and dispersion coefficient for each section of the river. Among them, the dispersion coefficient is used to analyze the diffusion range of soluble pollutants. Existing experimental research cases for tracking the behavior of pollutants require a lot of manpower and cost, and it is difficult to obtain spatially high-resolution data due to limited equipment operation. Recently, research on tracking contaminants using RGB drones has been conducted, but RGB images also have a limitation in that spectral information is limitedly collected. In this study, to supplement the limitations of existing studies, a hyperspectral sensor was mounted on a remote sensing platform using a drone to collect temporally and spatially higher-resolution data than conventional contact measurement. Using the collected spatio-temporal hyperspectral images, the tracer concentration was calculated and the transverse dispersion coefficient was derived. It is expected that by overcoming the limitations of the drone platform through future research and upgrading the dispersion coefficient calculation technology, it will be possible to detect various pollutants leaking into the water system, and to detect changes in various water quality items and river factors.