• Title/Summary/Keyword: Pollutant loading

Search Result 252, Processing Time 0.028 seconds

A Study on Outflow and Pollutant Loading in Nam River Dam Basins (남강댐 유역의 유출량과 오염부하량 연구)

  • Kim, Jong-Oh;Kim, Ok-Sun;Kim, Hong-Chul
    • Journal of Wetlands Research
    • /
    • v.2 no.1
    • /
    • pp.87-94
    • /
    • 2000
  • The purpose of this study was to analysis the pollutant loading of Chin yang Reservoir according to the variation of outflow. Regression equation of the pollutant loading and outflow was represented as $L=a\;Q^b$ in which L = pollutant loading(kg/day), a and b = regression coefficient, and Q = outflow($m^3/day$). Regression coefficients ($R^2$) of Sanchung, Sinan and Changchon site was in range of 0.8376 to 0.9818. Therefore the pollutant loading was good correlated with outflow. Changchon site had minimum b value because outflow of pollutant was little compared with rainfall. The SS was the highest b value 1.621~1.7834 among water quality parameters because the pollutant loading of SS was much affected by outflow. Also, the pollutant loadings per area could be calculated and compared in case of the dry season, normal season and flood season. The pollutant loading in the normal and flood season except the dry season were higher in order of Sanchung, Sinan and Changchon site. Pollutant loading per area were higher in order of Sinan, Sanchung and Changchon site. When it compared with pollutant loading per area calculated using pollutant unit loading, T-N was much different each other.

  • PDF

Development of Pollutant Loading Estimation System using GIS (GIS를 이용한 유역별 오염부하량 산정시스템의 개발)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Shim, Jae-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.3
    • /
    • pp.97-107
    • /
    • 2005
  • The purpose of this study is to develop a system, which estimates watershed pollutant loading rate through the combination of GIS and computational mode. Also, the applicability of this study was estimated by the application of the above system for Chuncheon City. The detailed results of these studies are as follows; The pollutant loading estimation system was developed for more convenient estimation of pollutant loading rate in watershed, and the system load was minimized by the separation of estimation module for point and non-point source. This system on the basis of GIS is very economical and efficient because it can be applied to other watershed with the watershed map. System modification is not needed. The pollutant loading estimation system for point source was developed to estimate the pollutant loading rate in watershed through the extraction of the proper data from all districts and yearly data and the execution of spatial analysis which is main function of GIS. From the verification result of spatial analysis, real watershed area and the administrative districtarea extracted by spatial analysis were $1,114,893,340.15m^2$ and $1,114,878,683.68m^2$, respectively. It shows that the spatial analysis results were very exact with only 0.001% error. The pollutant loading estimation system for non-point source was developed to calculate the pollutant loading rate through the overlaying of land-use and watershed map after the construction of new land-use map using the land register database with most exact land use classification. Application result for Chuncheon City shows that the proposed system results in one percent land use error while the statistical method results in five percent. More exact nonpoint source pollutant loading was estimated from this system.

A Stochastic Analysis of the Water Quality with Discharge Variation in Upper Nakdong River Basin (낙동강 상류 유역에서의 유량변동에 따른 수질의 통계학적 분석)

  • Choi, Hyun Gu;Han, Kun Yeun;Choi, Seung Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.833-843
    • /
    • 2011
  • The purpose of this study is to analysis pollutant loading of upper Nakdong River basin according to the variation of discharge. The correlation between discharge and pollutant concentration and between discharge and pollutant loading were analyzed by statistical method, respectively. Regression equation of pollutant loading and discharge was represented as $L=_aQ^b$ in which L = pollutant loading(kg/day), and b = regression coefficients, and Q = discharge($m^3/day$). The correlation coefficient of study area was in range of 0.8428 to 0.9935. The SS was the highest b value 1.2856~1.7730 among water quality parameters because the pollutant loading of SS was much affected by flow. Additionally, the applicability of the regression equations was verified by comparing predicted results with observed value. The correlation coefficient of verification was in range of 0.8983 to 0.9987 and NSEC was in range of 0.7018 to 0.9960. Therefore the pollutant loading was good correlated with discharge. The main result will be used as basic data for water quality management and design of environment fundamental facilities.

Estimation of Pollutant Loadings from Agricultural Small Watershed Using the Unit Loading Factor and Water Quality Monitoring (수질 모니터링과 원단위법을 이용한 농업소유역의 오염부하량 추정)

  • 김상민;강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.94-102
    • /
    • 2003
  • A hydrologic and water quality monitoring network were established in the Balkan-reservoir watershed, which has 29.79 $km^2$ in size, to analyze the characteristics of pollutant loading from an agricultural small watershed. Soil type, land use, hydrologic soil group, population and livestock were also surveyed to make clear the pollutant sources and to calculate the pollutant loadings by the unit loading factor method which was proposed by the Ministry of Environment. From the 5-year hydrologic monitoring results, sub-watersheds located in the upstream of the reservoirs showed higher average runoff ratio. The calculated daily pollutant loadings by the unit loading factor method from HP#2 sub-watershed in the downstream of Balkan reservoir, were much greater than observed.

Characteristics of Pollutant Loading in Namdae-cheon Watershed

  • Choi, Jin-Kyu;Son, Jae-Gwon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.49-56
    • /
    • 2003
  • Nonpoint source pollutant loading from watershed may cause a problem to the water quality of the reservoir and stream. The characteristics of stream flow and water quality were monitored to investigate the runoff loading of the Namdae-cheon watershed from May in 1999 to October in 2003. Stage-discharge rating curve at the stream gauging site was established, and annual stream runoff of the study watershed was estimated as 499.4∼1,330.8mm during four years. The concentrations of total-nitrogen and total-phosphorus of stream water quality ranged from 0.76 to 6.95mg/L and from 0.0010 to 0.2276 mg/L, respectively, where T-N was generally higher than the water quality standard 1.0 mg/L for agricultural water use. The loads by unit generation of pollutant mass with respect to population, livestock, land use in this watershed were calculated. The runoff pollutant loadings by concentrations of total-N and total-P were estimated during study period, where the annual runoff loading of total-P was much less than the load by pollutant mass unit generation. The relations between stream discharge and water quality were analysed, and there was a high correlation for total-N but low for total-P. These results will be used to develop the monitoring techniques and water quality management system of agricultural watershed.

Quantitative Assessment of Nonpoint Source Load in Nakdong River Basin

  • Kwon, Heon-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.7-23
    • /
    • 2014
  • This study estimates unit for the nonpoint source(NPS), classified according to the existing Level-1(large scale) land cover map, by monitoring the measurement results from each Level-2(medium scale) land cover map, and verifies the applicability by comparison with previously calculated units using the Level-1 land cover map. The NPS pollutant loading for a basin is evaluated by applying the NPS pollutant unit to Dongcheon basin using the Level-2 land cover map. In addition, the BASINS/HSPF(Better Assessment Science Integrating point & Non-point Sources/Hydrological Simulation Program-Fortran) model is used to evaluate the reliability of the NPS pollutant loading computation by comparing the loading during precipitation in the Dongcheon basin. The NPS pollutant unit for the Level-2 land cover map is computed based on precipitation measured by the Sangju observatory in the Nakdong River basin. Finally, the feasibility of the NPS pollutant loading computation using a BASINS/HSPF model is evaluated by comparing and analyzing the NPS pollutant loading when estimated unit using the Level-2 land cover map and simulated using the BASINS/HSPF models.

Pollutant Loading Estimates from Watershed by Rating Curve Method and SWMM

  • Jeon, Ji-Hong;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.419-425
    • /
    • 2000
  • Rating curve method and SWMM (Storm Water Management Model) were applied to estimate pollutant loading from Hwa-Ong watershed in Kyunggi-Do. Rating curves were derived from sampling sites and applied to the whole watershed. SWMM version 4.4 was calibrated by field data of sampling sites and applied to the whole watershed. The pollutant loading estimated by rating curve was slightly higher than the one by SWMM, but the difference was not significant considering diffuse pollution characteristics of wide variation. Land use effect of the subcatchments could not be incorporated logically in rating curve method and difficulty in extrapolation was experienced, therefore, the estimate by rating curve method was thought to be less confident. SWMM was satisfactory in estimation of pollution loading, and its great flexibility worked well to describe complex nonurban land uses. Neither of them could exactly describe complex natural phenomena, but SWMM was preferred in this study due to its flexibility and logical hydrologic processes including land use effects. Use of reasonable watershed model rather than rating curve method for watershed pollutant loading estimate can be more practical and is recommended.

  • PDF

Prediction of the Pollutant Loading into Estuary Lake according to Non-cultivation and Cultivation conditions of Reclaimed Tidal Land (담수호 유입 오염부하량의 간척농지 영농 전.후 변화 예측)

  • Yoon, Kwang-Sik;Choi, Soo-Myung;Yang, Hong-Mo;Han, Kuk-Heon;Han, Kyung-Soo
    • Journal of Korean Society of Rural Planning
    • /
    • v.7 no.1 s.13
    • /
    • pp.27-36
    • /
    • 2001
  • Estimation of current and future loading from watershed is necessary for the sound management of water quality of an estuary lake. Pollution sources of point and non-point source pollution were surveyed and Identified for the Koheung watershed. Unit factor method was used to estimate potential pollutant load from the watershed of current conditions. Flow rate and water qualify of base flow and storm-runoff were monitored in the main streams of the watershed. Estimation of runoff pollutant loading from the watershed into the lake in current conditions was conducted by GWLF model after calibration using observed data. Prospective pollutant loading from the reclaimed paddy fields under cultivation conditions was estimated using the modified CREAMS model. As a result, changes of pollutant loading into estuary lake according to non-cultivation and cultivation conditions of reclaimed tidal land were estimated.

  • PDF

The Management Planning of Pollutant Loading Allocation in the Kumho River Basin (금호강 유역의 오염총량 관리 대책 수립)

  • 황병기;정효준
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1125-1131
    • /
    • 2002
  • This study was performed to plan pollutant loading allocation by sub-watershed at Kumho river basin located in the north Kyeongsang province. HEC-geoHMS which is extension program of ArcView was used to extract sub-watershed. To simulate water quality, Qua12eu model was calibrated and validated. BOD was simulated under several scenarios to evaluate reduction effects of pollutant loading. Uniform treatment and transfer matrix method was considered. Effects of headwater flow rate and efficiency waste water treatment plant were also considered.

Non-Point Source Pollutions of the Youngsan River Basins I - The Method of Land-Use Types and Rainfall - (영산강 수계의 비점오염원에 관한 연구 I - 토지이용 및 강우를 중심으로 -)

  • Cha, Jin Myeong;Shin, Sung Euy;Cha, Gyu Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 1999
  • This study was carried out to estimate the runoff loading characteristics of the non-point source pollutions in the Youngsan river basins by the method of land-use types and rainfall. The lysimeter test, rainfall and stream flowmeter measurement were performed to develop the pollutant loading unit discharged from the non-point sources. As the non-point sources, the unit pollutant discharge rates were different from the land-use types such as paddy field, upland, forest, housing site and others. The pollutant loading units classified by land-use types in the Youngsan river basins are as follows: The total BOD loading rate is 15.3 ton/day and the housing site is discharged 50.6%, the total T-N loading rate is 6.0 ton/day and the paddy field and upland is discharged 77.6%, and the total T-P loading rate is 0.39 ton/day and the paddy field and upland is discharged 81.2%. The pollutant loadings by rainfall in the Youngsan river basins are about 7,425 ton/year of BOD, 324 ton/year of T-N and 118 ton/year of T-P, respectively.

  • PDF