• 제목/요약/키워드: Pollutant distribution

Search Result 293, Processing Time 0.019 seconds

Distribution of Epiphytic Bacteria and Acid-Tolerant Bacteria on the Phyllosphere in the Industrial and Clean Areas (공단지역 및 청정지역 식물 잎권의 잎표면세균 및 내산성세균의 분포)

  • Ahn, Jong-Hoon;Bang, Sook-Jin;Han, Nam-Jung;Song, Wang-Young;Hwang, Soyoung;Lee, In-Soo;Park, Seong Joo
    • Korean Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.262-266
    • /
    • 1997
  • Total, direct viable count, and acid-tolerant epiphytic bacterial population sizes were quantified on leaves of chestnut tree (Castanea crenata S. et Z.) near Taejon Industrial Estate affected by acid precipitation and deposition as well as in the clean natural forest area, Mt. Kyejok, in Taejon city from August 1996 to August 1997. Geometric mean numbers of total, direct viable count, and acid-tolerant epiphytic bacteria were $9.9{\times}10^5cell/cm^2$, $1.6{\times}10^6cell/cm^2$, and $7.1{\times}10^3cfu/cm^2$ respectively, being 1.5, 2, and 2.6 times those in the clean area. Acid-tolerant epiphytic bacterial numbers at pH 5.6 by MPN method were $3.3{\times}10^4$ in the industrial area, about the same as the number, $3.4{\times}10^4MPN/cm^2$, of the clean area. Acid-tolerant bacterial number at pH 4.0 was $1.9{\times}10^{-1}MPN/cm^2$ in the industrial area, whereas none was detected in the clean area. Acid-tolerant bacteria at pH 3.0 were not detected at all in the industrial area as well as in the clean area. Epiphytic bacterial population sizes were generally the greatest in May when leaves are emerged and grew hut the lowest in November when defoliation occurs. These results showed that air pollutant deposition on leaves did not cause a decrease of epiphytic bacteria at least and acid deposition on leaves did cause an increase of acid-tolerant bacteria.

  • PDF

Analysis of Concentration Variations of Long-Range Transport PM10, NO2, and O3 due to COVID-19 Shutdown in East Asia in 2020 (2020년 동아시아지역에서 COVID-19 폐쇄로 인한 장거리 이동 PM10, NO2, O3 농도 변동성 분석)

  • Kim, Yu-Kyung;Cho, Jae-Hee;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.278-295
    • /
    • 2021
  • China's shutdown due to COVID-19 in 2020 reduced air pollutant emissions, which is located on the windward side of South Korea. The positive temperature anomaly and negative zonal wind anomaly from northern Mongolia to South Korea through eastern China presented warm and stationary air masses during January and February 2020. Decreased concentrations of PM10, NO2, and O3 were measured at Seokmo-ri and Pado-ri, located in the central-western region of South Korea, due to decreased emissions in China from January to March 2020. After China's shutdown from January to March 2020, in Pado-ri, the ratio of monthly average concentrations in that period with those of PM10 and O3 in the last four years decreased by approximately 0.7-4.7% and 9.2-22.8%, respectively. In January 2020, during the Lunar New Year holidays in China, concentrations of PM10, NO2, and O3 at Seokmo-ri and Pado-ri decreased just as much as it did during the same period in the last four years. However, average concentrations in January 2020 decreased before and after the Lunar New Year holidays in China when compared with those in January of the last four years. In Seokmori, ratios of actual and predicted values (${\bar{O}_s$/M) for PM10, NO2, and O3 concentrations were calculated as 70.8 to 89.7%, 70.5 to 87.1%, and 72.5 to 97.1%, respectively, during January and March 2020. Moreover, those of Pado-ri were 79.6 to 93.5%, 67.7 to 84.9%, and 83.7 to 94.6%, respectively. In January 2020, the aerosol optical depth (AOD) data showed a higher distribution than that of the last four years due to photochemical reactions in regions from northern Mongolia to eastern China and the Korean Peninsula. However, the decrease in AOD values compared with those of the last four years was attributed to the decrease in emissions of precursors that generate secondary aerosols in China during March 2020.

Causes of High PM2.5 Concentrations in Cheongju Owing to Non-Asian Dust Events (비황사 사례에 기인한 청주시 PM2.5 고농도 원인)

  • Kim, Da-Bin;Moon, Yun-Seob
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.557-574
    • /
    • 2020
  • The purpose of this study is to analyze the cause of high PM2.5 mass concentrations in Cheongju for the period of non-Asian dust days using the weather chart, the stream lines at 850 hPa, the backward trajectory, and the weather and air quality model. As a result of analyzing the time series of PM2.5 concentrations and weather charts for the episodic days in Cheongju, the weather patterns were shown in related to long-range transport of PM2.5 from China or surrounding areas. In fact, in the PM2.5 time series, 60-80 ㎍ m-3, which is more than 2-3 times higher than the concentration attributed to Cheongju activities, was observed as a background concentration related to long-range transport. The distribution of high PM2.5 concentration was typically dependent on the locations of the high and low pressures above the ground while the upper jet stream passed through the Korean Peninsula. Consequently, the high PM2.5 concentration in Cheongju is due to massive air pollutants in the form of smog originated from industrial, household and energy combustion sources of Beijing and other nearby regions of China. These air pollutants move along a fast zonal wind caused by the atmospheric pressure arrangement. high concentration of PM2.5 in Cheongju City is because the mass of air pollutants in the form of smog generated from industrial, household and energy combustion origins in Beijing or other nearby regions of China move along a fast wind speed zone according to the atmospheric pressure arrangement of long-distance transportation. Air pollutants including PM2.5 show an M-shaped pattern that passes through the topography of the Cheongju basin from north to south as a belt or band-shaped pollutant. The ground high pressure according to the above-ground high pressure expansion area and cut-off low or low pressure arrangement, or the bands in the form of river stems appear in a gradual incremental pattern that changes into a U-shape under the influence of the wind.