• Title/Summary/Keyword: Pollutant discharge

Search Result 289, Processing Time 0.027 seconds

Necessity of Strengthening Small-Scale Wastewater Discharge Facilities Management (소규모 폐수배출시설 관리 강화의 필요성)

  • Park, Jae Hong;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.226-233
    • /
    • 2018
  • Small-scale wastewater discharge facilities account for 98% of all workplaces, but in the generation and emission of major pollutants, they account for 27.5 % and 23.5 %, respectively. Since the proportion of the emission load of the small-scale workplace is not large, the national environmental policy has been established mainly around large-scale wastewater discharge facilities. However, in the case of specific hazardous substances in water, the amount of the discharge load of the small-scale wastewater discharge facility was 2.4 times higher than that of the generation load. Certain types of specific hazardous substances in water, which have a higher discharge load than large-scale wastewater discharge facilities, account for 24 ~ 32 %. There are also cases in which the discharge load from a small-scale discharge facility is more than four times higher, depending on the specific kind of water pollutant. As a result of inspections, the violation rate of the small-scale wastewater discharge facility among the total violations by facilities is 93.9 ~ 97.5 %. As a result, the ecotoxicity value of small-scale wastewater discharge facilities was high in most industries, and there was a fluctuation in the measured value. This indicates that the ecological integrity of the water system can be largely influenced by small-scale wastewater discharge facilities. Therefore, it is necessary to expand the environmental management of small-scale wastewater discharge facilities, and in some cases, the effect of the improvement in quality may be more significant than in the management of large-scale wastewater discharge facilities.

Run-Off Characteristicsof Pollutant Loadings in Rural Area (농촌지역의 유량.부하량관계식 산정)

  • 송인홍;박병흔;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.701-707
    • /
    • 1999
  • This study was initiated to collect background pollutant data for rural watersheds. The effluent/run-off polutant load and run-off ratio of the study areas were calculated and the two types of regression equations, L=a$.$Q+b and L=c$.$Qd where L and Q are the pollutant load(L) and discharge (Q), were derived. We acquired that the correlation coeffcients of the two types of regression equations were over than 90% except for BOD . Therefore, L-Q equations would be a measure to predict water quality of rural watersheds.

  • PDF

Regional Characteristics of Nonpoint Source Pollutant Loads in the Upstream Watersheds of Nakdong River (낙동강 상류유역의 지역별 비점오염부하 특성)

  • Choe, Gyeong-Suk;Son, Seong-Ho
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.283-292
    • /
    • 2006
  • The characteristics of nonpoint source pollutant loads in upstream of Nakdong River were studied through analysis of pollutant loads of 10 sub-watersheds divided based on administrative district. The discharge and pollutant concentration of each sub-watershed were collected from Nakdong-River Water Research Institute and Daegu Regional Environmental office, respectively. Pollution items analysed in this study were BOD, T-N and T-P. The delivery loads of the nonpoint source pollutions of each sub-watershed were calculated after analysing the concentration of the pollution of each site. Several points were found from the results. Firstly, in general, city areas including Sangju, Andong showed higher degree of nonpoint pollution than country areas including Cheongsong, Yeongyang. The sub-watersheds located upstream side, such as Yeongju, Bonghwa, Necessarily show better water quality than the sub-watersheds located downstream side, such as Mungyeong, Uiseong. This result indicates that a given pollution condition within the watershed can be more sensitive than location factor to the level of water quality. Secondly, the delivery load and area of watershed were not necessarily correlated in the sense of water quality, while the discharge was shown to be highly correlated to the delively load of pollution. Lastly, sewage and waste caused from population and livestock, as well as landuse factor, were found to significantly contribute to the water pollution. Alternative solutions for controlling pollution source, therefore, should be provided to meet target levels of water quality in these regions.

  • PDF

Water Quality Modeling for Intake Station by 2-dimensional Advection-Dispersion Model (2차원 이송-확산 모형을 이용한 취수장 유입 수질 예측)

  • Kim, Jae-Dong;Kim, Ji-Hoon;Kim, Young-Do;Song, Chang-Geun;Seo, Il-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.667-679
    • /
    • 2011
  • In this study, the influences of pollutant from Dae-po Stream and So-gam Stream located at the downstream of Nak-dong River on the water quality at Mul-geum water intake station were analyzed using RAMS model. Field measurements of velocity by ADCP, and water quality distribution of BOD and TP by water sampling were carried out to present the input and verification data for numerical simulations. The comparison between RAM2 and ADCP measurement, which aimed for the analysis of 2-D velocity distribution around Mul-geum water intake station showed that two results matched well along the spanwise direction. The prediction of pollutant concentration by RAM4 agreed fairly well with the measured data except for the points nearby right banks in the vicinity of tributary pollutant source. Flushing effect by the increase of mainstream discharge in Nak-dong River was analyzed to provide the damage mitigation in preparation for the accidental water pollution. With increasing mainstream discharge, high velocity and increased water quantity induced increasing dilution effect, thereby decreasing the inflow pollutant concentration rapidly.

A Study on Disposal Method of Non-Point Pollutant of the Rolling Stock Depot (철도 차량기지내 비점오염물 처리방안 연구)

  • Jung, Jae-Hyoung;Shin, Min-Ho;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2910-2916
    • /
    • 2011
  • Environmental conservation is becoming the major conversation topic in the 21st century, the era of environment. In the Law for the Preservation of Water Quality, article 53 states "A business unit which is doing business causing pollution caused by non-point pollutant or builds waste water discharge facilities, should report the installation of the non-point pollutant and install the required pollution control facilities". Environmental pollution caused by oil leaks during operation or maintenance has been found in the railway sector. Especially, rolling stock depot is most likely to be affected by environmental pollution. Therefore, in this paper We have investigated non-point pollutant in the rolling stock depot area and have studied adequate disposal method to minimize the effect of the non-point pollutant, hoping to supply the preliminary data for building an environment-friendly rolling stock depot.

  • PDF

Monitoring the Hydrologic Water Quality Characteristics of Discharge from a Flat Upland Field (평지 전작 유출수의 수문·수질 특성 모니터링)

  • Park, Chanwoo;Oh, Chansung;Choi, Soon-Kun;Na, Chae-in;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.109-121
    • /
    • 2020
  • Converting the agricultural land-use of rice field to upland has been increasingly conducted as farmers encourages themselves to grow higher value-added crops on rice fields under the policy support. Comparing to rice field, Upland shows different characteristic of discharge due to the slope, scale, and shape of field and characteristics of rainfall event. In this study, we designed the experiment fields reflecting flat-upland characteristics with different land scale, and tried to collect the discharge and load data. Soybeans and corn were selected as target crops considering the possibility of large-scale cultivation and crop demand. The cultivation was conducted during the growth period in 2019 with 3 different field scales. Hence, we have collected the discharge data from 17 rainfall events and the load data for 8 rainfall events. As a result, the magnitude of rainfall events and the discharge duration were found to have a strong positive correlation and field discharge occurred during the period by 55% to 83% of rainfall duration. Besides we found other relationships and characteristics of rainfall event, discharge, and pollutant load and also pointed out that continuous monitoring and more data are required to derive statistically significant results. Compared with slope-field monitoring data obtained from the precedent research, the runoff ratio of the flat-fields was significantly lower than slope-fields. Overall the discharge in the slop and flat-fields shows appreciably different characteristics so that the related researches need to be further conducted to reasonably assess environmental impact of agricultural activities at flat-field.

Corona Discharge and Ozone Generation Characteristics of a Wire-to-Wire Plasma Reactor with a Ferroelectric Pellet Layer (강유전체층을 갖는 선대선 방편 플라즈마장치의 코로나 방전 및 오존발생 특성)

  • 문재덕;신정민;한상옥
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.377-381
    • /
    • 2004
  • A discharge plasma reactor using a ferroelectric pellet packed bed is now used as a removal means of pollutant gases, such as NOx, SOx and VOCs. When an ac voltage is applied to this plasma reactor, then the pellets are polarized, and great electric fields are formed at each top and bottom contact points of the ferroelectric pellets. Thus the points of each pellet become covered with intense corona discharges, where an electrophysicochemical reaction is taking place strongly However these strong discharges also elevate the temperature of the pellets greatly and concurrently decrease the output ozone generation, as a result, the overall removal efficiency of gas becomes decreased greatly A new configuration of discharge plasma reactor using a ferroelectric pellet layer and a wire-to-wire electrode has been proposed and investigated experimentally. It is found that an intensive microdischarge is taking place on the surface of ac corona-charged ferroelectric pellet layer of the proposed reactor, which concurrently enhances the efficiency of plasma generation greatly And, this type of configuration of plasma reactor utilizing a wire-to-wire electrode and a ferroelectric pellet layer could be used as one of effective plasma reactors to remove pollutant gas.

Determination of Daily Pollutant Loadings Using TANK Model (탱크모형을 이용한 일별 오염부하량의 산정)

  • 엄명철;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.92-100
    • /
    • 1996
  • In order to control the water quality in rivers or lakes, it is needed to evaluate accurate amount of pollutant loadings from watersheds. The daily pollutant loadings were simulated using the pollutant loading calculation model which was composed of mathematical equations superimposed on the TANK model. The calibration of runoff and pollutant loading parameters were carried out with observed data, using a trial-and-error method. In addition, the proposed model was applied to evaluate its applicability for the representative watershed, the Bokha river watershed, Icheon city, Korea. The parameters of SS and T-P showed large values in the first tank while T-N showed large in the second tank. As a result of simulating the daily pollutant loadings by the pollutant loading calculation model, all of SS, T-N and T-P loadings were increased or decreased according to the amount of runoff discharge. Especially, it was apparent that SS and T-P loadings were significantly influenced by the runoff variation when it was rain. These results could partly explain that SS and T-P would occur mainly from the surface runoff while T-N would occur from both surface and subsurface flow.

  • PDF

Evaluation of Pollutant loads at Inflow Streams under Ara Waterway Basin

  • Han, Sangyun;Jung, Jongtai
    • Journal of Urban Science
    • /
    • v.10 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In this study, to evaluate the characteristics of the pollution in the major inflow tributaries and major environmental facilities in the watershed of Ara waterway, An inflow flow rate measurement and water quality analysis were conducted during dry and rainy seasons. In addition, the flow rate measurement, water quality analysis, and pollutant load at each monitoring point were compared and evaluated. Influx of BOD5, T-P and T-N into the tributaries of the ARA waterway watershed, excluding the Gulpo river watershed, during dry season were only 0.007%, 0.005% and 0.004% respectively of the incoming loads in the entire ARA waterway basin. In addition, it was confirmed that the discharge pollutant loads during rainfall event was about 440 times more for BOD5, about 545 times on T-P, and about 23 times on T-N in comparison to the pollutant loads during the dry days. When the Gulhyeon rubber dam was deflated, the discharged pollutant load during a rainfall was higher than the estimated load at the G7 monitoring point because the deposited pollutants from the upstream riverbed flowed down. Therefore, during a rainy season, it is necessary to manage the influx of high-load water pollutants from the overflow and deflation of the Gulhyun rubber dam as well as to find a strategy to reduce the pollutant loads in the Gulpo river watershed.

Evaluation of Flow-Pollutant Load Delivery Ratio Equations on Main Subwatersheds within Juam Lake (농촌유역 유량-유달율 단순회귀식을 이용한 주암호 상류유역의 유달율 추정가능성 평가)

  • Jung, Jae-Woon;Lim, Byung-Jin;Choi, Dong-Ho;Choi, Yu-Jin;Lee, Kyoung-Sook;Kim, Young-Joo;Kim, Kap-Soon;Chang, Nam-Ik;Yoon, Kwang-Sik
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1235-1244
    • /
    • 2012
  • The objective of this study is to evaluate Flow-Pollutant load delivery ratio equations developed from rural watershed on main subwatersheds within Juam Lake. Two regression equations for BOD and three equations for T-P were evaluated on Bosung cheon, Dongbok cheon, Songgwang cheon, Naenam cheon, and Sinpyeon cheon. The results show that estimation of BOD delivery ratio using flow-delivery equation is reliable when relative composition of discharge load of pollutant sources of a watershed is similar to those of watershed where the equation developed. On the other hand, application of regression equation for T-P was feasible when the landuse pattern and relative composition of discharge load of pollutant sources of a watershed is similar to those of watershed where the equation developed.