• Title/Summary/Keyword: Pollutant concentrations

Search Result 540, Processing Time 0.034 seconds

Reduction of Pollutant Load by Small Pond in a Rice Paddy Applied with Pig Manure Compost (돈분퇴비가 시용된 논의 양분유출 저감을 위한 저류지 효과)

  • Kim, Min-Kyeong;Kim, Myung-Hyun;Choi, Soon-Kun;Cho, Kwang-Jin;Hong, Seong-Chang;Jung, Goo-Bok;So, Kyu-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.4
    • /
    • pp.21-27
    • /
    • 2014
  • Pig slurry has been considered as environmental waste to be treated in an appropriate manner. Moreover, water-born pollution loads by agricultural non-point source(NPS) pollution are expected to become intensified due to ongoing precipitation change. This study was conducted to develop a best management practice to reduce NPS pollution load by agricultural activity with pig manure compost. An eco-friendly way, small drainage pond, was suggested in this study to avoid direct drainage of agricultural runoffs and eventually reduce the amount of pollutants discharged into the surrounding aqua-environment. A small pond($12m^2$) was constructed at the corner of a rice paddy field($17,15m^2$) located in Suwon, Korea. Water was allowed to drain only via a small drainage pond. Sampling was repeatedly made at two locations, one from an entrance and the other from an exit of a pond, during the rice cultivation period(May to October, 2013). Generally, sampling was made only when runoff water drained through a pond, such as during and/or after rain(irrigation). The water quality analysis showed that all quality parameters(SS, $COD_{Mn}$, T-N, and T-P) were improved as water passed through the pond. The amount of runoff water was reduced by 67.8%. Suspended solids and $COD_{Mn}$ concentrations were reduced by 79.8% and 71.9%, respectively. In case of T-N and T-P amounts, the reduction rates were 73.6% and 74.9%, respectively. Our data implies that agricultural NPS pollution from rice paddy fields with pig manure-based fertilizer can be effectively managed when an appropriate drainage water management practice is imposed.

Numerical Simulation of the Formation of Oxygen Deficient Water-masses in Jinhae Bay (진해만의 빈산소 수괴 형성에 관한 수치실험)

  • CHOI Woo-Jeung;PARK Chung-Kill;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.413-433
    • /
    • 1994
  • Jinhae Bay once was a productive area of fisheries. It is, however, now notorious for its red tides; and oxygen deficient water-masses extensively develop at present in summer. Therefore the shellfish production of the bay has been decreasing and mass mortality often occurs. Under these circumstances, the three-dimensional numerical hydrodynamic and the material cycle models, which were developed by the Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the oxygen depletion and also to evaluate the environment capacity for the reception of pollutant loads without dissolved oxygen depletion. In field surveys, oxygen deficient water-masses were formed with concentrations of below 2.0mg/l at the bottom layer in Masan Bay and the western part of Jinhae Bay during the summer. Current directions, computed by the $M_2$ constituent, were mainly toward the western part of Jinhae Bay during flood flows and in opposite directions during ebb flows. Tidal currents velocities during the ebb tide were stronger than that of the flood tide. The comparision between the simulated and observed tidal ellipses showed fairly good agreement. The residual currents, which were obtained by averaging the simulated tidal currents over 1 tidal cycle, showed the presence of counterclockwise eddies in the central part of Jinhae Bay. Density driven currents were generated southward at surface and northward at the bottom in Masan Bay and Jindong Bay, where the fresh water of rivers entered. The material cycle model was calibrated with the data surveyed in the field of the study area from June to July, 1992. The calibrated results are in fairly good agreement with measured values within relative error of $28\%$. The simulated dissolved oxygen distributions of bottom layer were relatively high with the concentration of $6.0{\sim}8.0mg/l$ at the boundaries, but an oxygen deficient water-masses were formed within the concentration of 2.0mg/l at the inner part of Masan Bay and the western part of Jinhae Bay. The results of sensitivity analyses showed that sediment oxygen demand(SOD) was one of the most important influence on the formation of oxygen depletion. Therefore, to control the oxygen deficient water-masses and to conserve the coastal environment, it is an effective method to reduce the SOD by improving the polluted sediment. As the results of simulations, in Masan Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $50\%$ reduction in input COD loads from Masan basin and $70\%$ reduction in SOD was conducted. In the western part of Jinhae Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $95\%$ reduction in SOD and $90\%$ reduction in culturing ground fecal loads was conducted.

  • PDF

Comparison of Removal Efficiencies in Single and Duplex Ventilation Constructed Wetland Systems for Treating Domestic Sewage (단일 통풍형과 이중 통풍형 인공습지시스템의 하수처리 효율 비교)

  • Seo, Dong-Cheol;Lim, Seok-Cheon;Jo, In-Seong;Lee, Byeong-Ju;Lee, Hong-Jae;Kim, Sang-Don;Lee, Jun-Bae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.258-265
    • /
    • 2009
  • To develop environmentally friendly constructed wetlands(CWs) for treating domestic sewage which was produced in farming and fishing village, the efficiency of water treatment at different ventilation systems in the vertical bed, depths of horizontal bed, and sewage loads was investigated. In the vertical bed, BOD and COD by duplex ventilation system were lower than those by single ventilation system. But T-N and T-P concentrations by both ventilation systems in the vertical bed were little different. In the horizontal bed, BOD, COD, T-N and T-P in 1.0 m and 1.3 m depths were little different. To reduce the CWs' area and to improve the pollutant removal efficiencies, the optimum depth of horizontal bed was 1.3 m. In single and duplex ventilation CWs, the removal rate of BOD, COD, SS, T-N and T-P decreased slightly with the sewage load increases. In same sewage load conditions, the removal rates of BOD, COD, SS, T-N and T-P by duplex ventilation CWs were higher than those by single ventilation CWs. In summary, to effectively treat domestic sewage from farming and fishing village, the optimum constructed wetlands would be the duplex ventilation CWs.

Ecological Examinations of the Radial Growth of Pine Trees (Pinus densiflora S. et Z.) on Mt. Namsan and the Potential Effects of Current Level of Air Pollutants to the Growth of the Trees in Central Seoul, Korea.

  • Kim, Eun-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.371-386
    • /
    • 1994
  • Ecological examinations of the radial growth Patterns of pine trees(Pinus densiflora Sieb. et Zucc) growing on Mt. Namsan in central Seoul were made to test a Proposition that the pine trees decline due to the influence of air pollution and acid rain, which was proposed by some researchers in Korea, and the potential effects of current level of air pollutants to the growth of the Pine trees in central Seoul have been speculated. Tree-rings of 40 trees sampled at 3 sites of Mt. Namsan were prepared and examined using a Computer-aided Tree-Ring Measuring System at Kookmin University, Korea. Air Pollutant data collected by the Ministry of Environment( MOE ) and the Forestry Research Institute(FRI) were used to infer the general conditions of the environment. Correlation analysis was applied to the data set of tree growth and the other environmental factors. General information derived from the close examination of the tree-rings and the data on air pollution, drought and the other biological conditions suggested that the growth of the pine trees was severely affected by the occurrence of drought(climatic variation), the prevalence of the pine leaf gall midges(insects), and the suppression by the black locust trees(Robinia pseudo-acacia L.) (competition among trees). While the current condition of air pollution in Seoul cannot be categorized as good, the concentrations of air pollutants are not so high as to cause acute damages to the trees. In addition, while the data of rain acidity showed episodic low PHs of under 4.0, the average of them is far less acidic than those which were observed in either northeastern United States or central Europe, where the decline of trees were not solely attributed to any of the air pollutants. Considering the sequential facts that one of the most important environmental factors that affect the growth of trees is weather condition of the forest that the proposition of the decline of the pine trees was made without careful examination of the growth patterns and past growth history of them as well as the complex influences of many other factors including the weather conditions to the growth of trees, and that no objective explanation has been made on the causal relationships between the current condition of air pollution and the growth of the trees, such a proposition should be evaluated as invalid for the explanation of tree growth on Mt. Namsan in central Seoul, Korea. The author evaluates the factors of air pollution (including acid rain) as the predisposing factors, which may have the Potentials to chronically affect the tree growth at the forest ecosystem on Mt. Namsan for a long period of time. Ecosystem ecological studies should be further carried out to carefully explain both the functional and the structural aspects of the ecosystem processes, which include the biogeochemistry and the long-term changes of soil conditions as well as the growth of the other tree species on the mountain.

  • PDF

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

Environmental Assessment and Decision of Remediation Scope for Arsenic Contaminated Farmland Soils and River Deposits Around Goro Abandoned Mine, Korea (토양 정밀 조사에 의한 고로폐광산 주변 비소오염 토양 및 하천퇴적토의 오염도 평가 및 오염 토양 복원 규모 설정)

  • 차종철;이정산;이민희
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.457-467
    • /
    • 2003
  • Soil Precise Investigation(SPI) for river deposits and farmland soils around Goro abandoned Zn-mine, Korea was performed to assess the pollution level of heavy metals(As. Pb, Cd, Cu) and to estimate the remediation volume for contaminated soils. Total investigation area was about 950000 $m^2$, which was divided into each section of 1500 $m^2$ corresponding to one sampling site and 545 samples for surface soil(0-10cm in depth) and 192 samples for deep soil(10-30cm in depth) from the investigation area were collected for analysis. Concentrations of Cu, Cd, Pb at all sample sites were shown to be lower than Soil Pollution Warning Limit(SPWL). For arsenic concentration, in surface soils, 20.5% of sample sites(104 sites) were over SPWL(6mg/kg) and 6.7%(34 sites) were over Soil Pollution Counterplan Limit(SPCL: 15mg/kg) suggesting that surface soils were broadly contaminated by As. For deep soils, 10.4% of sample sites(18 sites) were over SPWL and 0.6%(1 site) were over SPCL. Four pollution grades for sample locations were prescribed by the Law of Soil Environmental Preservation and Pollution Index(PI) for each soil sample was decided according to pollution grades(over 15.0 mg/kg, 6.00-15.00 mg/kg, 2.40-6.00 mg/kg, 1.23-6.00 mg/kg). The pollution contour map around Goro mine based on PI results was finally created to calculate the contaminated area and the remediation volume for contaminated soils. Remediation area with over SPWL concentration was about 0.3% of total area between Goro mine and a projected storage dam and 0.9% of total area was over 40% of SPWL. If the remediation target concentration was determined to over background level concentration, 1.1% of total area should be treated for remediation. Total soil volume to be treated for remediation was estimated on the assumption that the thickness of contaminated soil was 30cm. Soil volume to be remediated based on the excess of SPWL was estimated at 79,200$m^3$, soil volume exceeding 40% of SPWL was about 233,700 $m^3$, and soil volume exceeding the background level(1.23 mg/kg) was 290,760 TEX>$m^3$.

Analysis of PM2.5 Concentration and Contribution Characteristics in South Korea according to Seasonal Weather Patternsin East Asia: Focusing on the Intensive Measurement Periodsin 2015 (동아시아 지역의 계절별 기상패턴에 따른 우리나라 PM2.5 농도 및 기여도 특성 분석: 2015년 집중측정 기간을 중심으로)

  • Nam, Ki-Pyo;Lee, Dae-Gyun;Jang, Lim-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.183-200
    • /
    • 2019
  • In this study, the characteristics of seasonal $PM_{2.5}$ behavior in South Korea and other Northeast Asian regions were analyzed by using the $PM_{2.5}$ ground measurement data, weather data, WRF and CMAQ models. Analysis of seasonal $PM_{2.5}$ behavior in Northeast Asia showed that $PM_{2.5}$ concentration at 6 IMS sites in South Korea was increased by long-distance transport and atmospheric congestion, or decreased by clean air inflow due to seasonal weather characteristics. As a result of analysis by applying BFM to air quality model, the contribution from foreign countries dominantly influenced the $PM_{2.5}$ concentrations of Baengnyeongdo due to the low self-emission and geographical location. In the case of urban areas with high self-emissions such as Seoul and Ulsan, the $PM_{2.5}$ contribution from overseas was relatively low compared to other regions, but the standard deviation of the season was relatively high. This study is expected to improve the understanding of the air pollutant phenomenon by analyzing the characteristics of $PM_{2.5}$ behavior in Northeast Asia according to the seasonal weather condition change. At the same time, this study can be used to establish the air quality policy in the future, knowing that the contribution of $PM_{2.5}$ concentration to the domestic and overseas can be different depending on the regional emission characteristics.

Study on Causes and Countermeasures for the Mass Death of Fish in Reservoirs in Andong-si (안동시 저수지에서의 대량 어류 폐사에 대한 원인과 대책에 관한 연구)

  • Su Ho Bae;Sun Jin Hwang;Youn Jung Kim;Cheol Ho Jeong;Seong Yun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.52-62
    • /
    • 2023
  • This study focused on determining the specific causes and prevention methods of mass fish deaths occurred in five reservoirs (Gagugi, Neupgokgi, Danggokgi, Sagokji, and Hangokji) in Andong-si. For this purpose, a survey of agricultural land and livestock in the upper part of the reservoirs and analysis of water quality in the reservoir irrespective of whether it rains or not were conducted. We attempted to examine the changes in dissolved oxygen (DO) in the surface and bottom layers of reservoirs and changes in DO depending on the amount of livestock compost and time. Based on the above investigations, treatment plans were established to efficiently control the inflow of contaminated water into reservoirs. The rainfall and farmland areas in the upper part of the reservoir were investigated using Google and aviation data provided by the Ministry of Land, Infrastructure, and Transport. The current status of livestock farms distributed around the reservoirs was also examined because compost from these farms can flow into the reservoir when it rains. Various water quality parameters, such as phosphate phosphorus (PO4-P) and ammonium nitrogen (NH3-N), were analyzed and compared for each reservoir during the rainy season. Changes in the DO concentration and electrical conductivity (EC) were also observed at the inlet of the reservoir during raining using an automated instrument. In addition, DO was measured until the concentration reached 0 ppm in 10 min by adding livestock compost at various concentrations (0.05%, 0.1%, 0.3%, and 0.5% by wt.), where the concentration of the livestock compost represents the relative weight of rainwater. The DO concentration in the surface layer of reservoirs was 3.7 to 5.3 ppm, which is sufficient for fish survival. However, the fish could not survive at the bottom layer with DO concentration of 0.0-2.1 ppm. When the livestock compost was 0.3%, DO required 10-19 h to reach 0 ppm. Considering these results, it was confirmed that the DO in the bottom layer of the reservoir could easily change to an anaerobic state within 24 h when the livestock compost in the rainwater exceeds 0.3%. The results show that the direct cause of fish mortality is the inflow of excessive livestock compost into reservoirs during the first rainfall in spring. All the surveyed reservoirs had relatively good topographical features for the inflow of compost generated from livestock farms. This keeps the bottom layer of the reservoir free of oxygen. Therefore, to prevent fish death due to insufficient DO in the reservoir, measures should be undertaken to limit the amount of livestock compost flowing into the reservoir within 0.3%, which has been experimentally determined. As a basic countermeasure, minerals such as limestone, dolomite, and magnesia containing calcium and magnesium should be added to the compost of livestock farms around the reservoir. These minerals have excellent pollutant removal capabilities when sprayed onto the compost. In addition, measures should be taken to prevent fish death according to the characteristics of each reservoir.

The Characteristics and the Effects of Pollutant Loadings from Nonpoint Sources on Water Quality in Suyeong Bay (수영만 수질에 미치는 비점원 오염부하의 특성과 영향)

  • CHO Eun Il;LEE Suk Mo;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.279-293
    • /
    • 1995
  • The most obvious and easily recognizable sources of potential water pollution are point sources such as domestic and industrial wastes. But recently, the potential effects of nonpoint sources on water quality have been increased apparently. In order to evaluate the characteristics and the effects of nonpoint sources on water quality, this study was performed in Suyeong Bay from May, 1992 to July, 1992. The depth-averaged 2-dimensional numerical model, which consists of the hydrodynamic model and the diffusion model was applied to simulate the water quality in Suyeong Bay. When flowrate was $65.736m^3/s,$ the concentration of pollutants (COD, TSS and VSS) at Oncheon stream (Sebeong bridge) during second flush were very high as much as 121.4mg/l of COD, 1148.0mg/l of TSS and 262.0mg/1 of VSS. When flowrate was 4.686m^3/s, the concentration of pollutants $(TIN,\;NH_4\;^+-\;N,\;NO_2\;^--N\;and\;PO_4\;^{3-}-P)$ during the first flush were very high as much as 20.306mg/1 of TIN, 14.154mg/1 of $NH_4\;^+-N$, 9.571mg/l of $NO_2\;^--N$ and l.785mg/l of $PO_2\;^{3-}-P$ As results of the hydrodynamic model simulation, the computed maximum velocity of tidal currents in Suyeong Bay was 0.3m/s and their direction was clockwise flow for ebb tide and counter clockwise flow for Hood tide. Four different methods were applied for the diffusion simulation in Suyeong Bay. There were the effects for the water quality due to point loads, annual nonpoint loads and nonpoint loads during the wet weather and the investigation period, respectively. The efforts of annual nonpoint loads and nonpoint loads during the wet weather seem to be slightly deteriorated in comparison with the effects of point loads. However, the bay was significantly polluted by the nonpoint loads during the investigation period. In this case, COD and SS concentrations ranged 2.0-30.0mg/l, 7.0- 200.0mg/l in ebb tide, respectively. From these results, it can be emphasized that the large amount of pollutants caused by nonpoint sources during the wet weather were discharged into the bay, and affected significantly to both the water quality and the marine ecosystem. Therefore, it is necessary to consider the loadings of nonpoint pollutants to plan wastewater treatment plant.

  • PDF

The Absorption and Purification of Air Pollutants and Heavy Metals by Selected Trees in Kwangju (광주지역(光州地域)에서 주요(主要) 수목(樹木)의 대기오염물질(大氣汚染物質)과 중금속(重金屬) 흡수(吸收) 정화기능(淨化機能)에 관(關)한 연구(硏究))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.510-522
    • /
    • 1999
  • The air pollutants ; $SO_2$, $SO{_4}^{-2}$, $NO{_3}^-$, $Cl^-$ are absorbed into soils through falling with dusts and rain from the atmosphere. The sources of heavy metal contaminants in the environments are agricultural and horticultural materials, sewage sludges, fossil fuel combustion, metallurgical industries, electronics and waste disposal etc.. The soils and hydrosphere can be polluted on the way of the circulation of these heavy metals. Studied pollutant anions are $SO{_4}^{-2}$, $NO{_3}^-$ and $Cl^-$ and heavy metals are Se, Mo, Zn, Cd, Pb, Mn, Cr, Co, V, As, Cu and Ni which are the elements to be concerned with the essentials for plants, with animal and human health. This study is with the aim of selecting the species of roadside trees and green space trees which have excellent absorption of air pollutants and heavy metals from the atmosphere and the soils in the urban area. Two areas are designated to carry out this study : urban area ; Kwangju city and rural area ; the yard of Forest Environment Institute of Chollanam-do, at Sanje-ri, Sampo-myum, Naju city, Chollanam-do (23km away from Kwangju). This study is carried out to understand the movement of anions and heavy metals from the soils to the trees in both areas, the absorption of anions and heavy metals from atmosphere into leaves and the amounts of anions and heavy metals in leaves and fine roots(< 1mm dia.) of roadside trees and green space trees in Kwangju and trees in the yard of Forest Environment Institute of Chollanam-do. The tree species selected for this study in both areas are Ginkgo biloba, Quercus acutissima, Cedrus deodara, Platanus occidentalis, Robinia pseudoacacia, Alnus japonica. Metasequoia glyptostroboides. Zekova serrata. Prunus serrulata var. spontanea, and Pinus densiflora. The results of the study are as follows : 1. $SO{_4}^{-2}$, $NO{_3}^-$ and $Cl^-$ concentrations are higher in the soils of the urban area than in those of the rural area, and $NO{_3}^-$ and $SO{_4}^{-2}$ are higher in the leaves than in the roots due to the absorption of the these pollutants through the stomata. 2. Ginkgo biloba, Robinia pseudoacacia. Zekova serrata, Quercus acutissima, and Platanus occidentalis can be adequated to the roadside trees and the environmental trees due to their good absorption of $NO{_3}^-$ and $SO{_4}^{-2}$. 3. Heavy metals in the soils of both areas are in the order of Mn > Zn > V > Cr > Pb > Ni > Cu > Mo> Cd, and in the leaves and roots of the trees in the both areas are in the order of Mn>Zn>Cr>Cu>V>Ni. Both orders are similar ones except V. There are more in the urban soils than in the rural soils in amount of Mn, Zn, Pb, V, Cu. 4. It is supposed that there is no antagonism between Mn and Zn in this study. 5. Se, Co and As are not detected in the soils, the leaves and the roots in both areas. Sn, Mo, Cd and Pb are also not detected in the leaves and roots in spite of considerable amount in the soils of both areas.

  • PDF