• Title/Summary/Keyword: Polishing temperature

Search Result 194, Processing Time 0.045 seconds

Standardization of Surface Replication Procedures for Life Assessment of High Temperature Facilities (고온설비 수명평가를 위한 표면복제 절차의 표준화)

  • Park, Jong-Seo;Lee, Hae-Mu;Baek, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2381-2386
    • /
    • 2000
  • Surface replication is playing an important role in the assessment of creep damage and remaining life of high temperature components. As the replication procedures, however, have not been standardized in domestic industry, its standardization is proposed in this study. For this purpose, the 2.25Cr-IMo steel was heat treated(5 min at 1,300 0C and oil quenched) to produce a simulated HAZ microstructure, and crept in air at 575 0C and under 120 MPa to produce artificial cavities. Then, the effect of surface preparation procedures on the quality of replicas was investigated using this sample. As a result, it was demonstrated that the presence of cavities may be observed readily or missed depending on the surface preparation procedures followed. Therefore it is essential to repeat three polishing/etching cycles at least in order to reveal cavitation damage accurately, even though it may be tedious or time-consuming.

Surface Polishing of Polymer Microlens with Solvent Vapor (솔벤트 증기를 이용한 폴리머 마이크로 렌즈의 표면 연마)

  • Kim, Sin Hyeong;Song, Jun Yeob;Lee, Pyeong An;Kim, Bo Hyun;Oh, Young Tak;Cho, Young Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.644-649
    • /
    • 2013
  • Today, there are lots of progresses in the field of lens researches, especially in the microlens fabrication. Unlike normal lenses, microlens has been widely used as a role of improving the performance of photonic devices which increase the optical precision, and also used in the fields of the display. In this paper, polymer microlenses with $300{\mu}m$ diameter were replicated through hot-embossing from nickel mold which was fabricated by micro-EDM. After hot-embossing process, the polymer microlenses have a rough surface due to the crater formed by micro-EDM process, which is projected onto the surface of the lenses. The surface of polymer microlenses was polished using solvent vapor to improve the surface roughness of the microlenses without changing their shape. In the experiment, the surface roughness was improved with the processing time and vapor temperature. Also, the roughness improvement was greatly affected by the solubility difference between polymer and solvent.

A Study on the Micro-fracture Behavior of the MEMS Material at Elevated Temperature (고온용 MEMS 재료의 마이크로 파괴거동에 관한 연구)

  • Woo, Byung-Hoon;Bae, Chang-Won;Moon, Kyong-Man;Bae, Sung-Yeol;Higo, Yakichi;Kim, Yun-Hae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.550-555
    • /
    • 2007
  • The effective fracture toughness testing of materials intended for application in Micro Electro Mechanical Systems (MEMS) devices is required in order to improve understanding of how micro sized material used in device may be expected to perform upon the micro scale. ${\gamma}$-TiAl based materials are being considered for application in MEMS devices at elevated temperatures. Especially, in Alloy 4, both ${\alpha}_2$ and ${\gamma}$ lamellae were altered markedly in 3,000 h, $700^{\circ}C$ exposure. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. The materials were examined 2 types Alloy 4 on heat exposed specimen($700^{\circ}C$, 3,000 h) and no heat exposed one. Micro sized cantilever beams were prepared mechanical polishing on both side at $25{\sim}30{\mu}m$ and electro final stage polishing to observe lamellar orientation of same colony with EBSD (Electron Backscatter Diffraction Pattern). Through lamellar orientation as inter-lamellae or trans-lamellae, Cantilever beam was fabricated with Focused Ion Beam(FIB). The directional behavior of the lamellar structure was important property in single material, because of the effects of the different processing method and variations in properties according to lamellar orientation. In MEMS application, it is first necessary to have a reliable understanding of the manufacturing methods to be used to produce micro structure.

Pond System for Further Polishing of Constructed Wetland Effluent during Winter Season (연못을 이용한 동절기 인공습지 오수처리수의 추가 처리)

  • Yoon, Chun-Gyeong;Jeon, Ji-Hong;Kim, Min-Hee;Ham, Jong-Hwa
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.139-148
    • /
    • 2002
  • Pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent from December 2000 to June 2001. The wetland system used for the experiment was highly effective to treat the sewage during the growing season, but it was less effective and its effluent was still high to discharge to the receiving water body. Therefore, the wetland effluent may need further treatment to prevent water quality degradation. Pond system could be used to hold and further polish the wetland effluent during the winter season and ots feasibility was evaluated in this study. Additional water quality improvement was apparent in the pond system during winter season, and the pond effluent could be good enough to meet the effluent water quality standards if it is properly managed. Timing of the pond effluent discharge appears to be critical for pond system management because it is a closed system and whole water quality constituents are affected by physical, chemical, and biological pond environments. Once algae started to grow in mid-April, constituents in the pond water column interact each other actively and its control becomes more complicated. Therefore, upper layer of the pond water column which is clearer than the lower layer my need be discharged in March right after ice cover melted. In the experiment, water quality of the upper water column was markedly clear in March than ant other times probably because of freezing-thawing effect. The remaining lower water column could be further treated by natural purification as temperature goes up or diluted with better quality of wetland effluent for appropriate water uses. This study demonstrated the feasibility of pond system for subsequent management of wetland effluent during the winter season, however, more study is needed for field application.

Technology of selective absorber coatings on solar collectors using black chromium+3 sulfate acid on substrates (흑색 황산3가크롬을 이용한 태양열 흡열판 선택흡수막 도금기술)

  • Ohm, Tae-In;Yeo, Woon-Tack;Kim, Dong-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.27-35
    • /
    • 2013
  • One of the most important factors that have a large influence on performance of the solar water heater system is performance of the solar collector, more detailedly, coating technology on the surface of the solar collector, which can provide high solar absorptance and low emittance. The core of the coating technology is to coat solar selective surfaces. In this study, various performance experiments are carried out using $Cr_2(SO_4)_3{\cdot}15H_2O$ coating technology. Here, IGBT(Insulated Gate Bipolar Transistor) of 5000A-15V was used as the surface processing rectifier which can stably output power and also can control voltage and current. The plating solution mainly contains black chrome$^{+3}$ concentration, H-y Conductivity, N-u Complex, NF Additive and NC-2 Wetter. Before applying the black chrome coating on the copper plate, optimal conditions are provided by using various preprocessing methods such as removal of fat, activation, electrolytic polishing, nickel strike, copper sulfate plating and bright neckel plating, and then the automatic continuous coating experiment are performed according to plating time and cathode current density. In the experiment, after the removal of fat, chemical polishing, nickel strike and activation processes as the preprocessing methods, the black chrome coating was performed in a plate solution temperature of $28^{\circ}C$ and a cathode current density of $18A/cm^2$ for 90 seconds. The thickness of chrome and nickel on the coated plate is $0.389{\mu}m$, $159{\mu}m$ respectively. As a result of the coating experiment, it showed the most excellent performance having a high solar absorptance of 98% and a low emittance of $5{\pm}1%$ when the black chrome surface had a thickness of $0.398{\mu}m$.

Synthesis of AlO(OH) Nano Colloids from γ-Al2O3 via Reversible Process (γ-Al2O3로부터 가역과정을 경유한 AlO(OH) 나노콜로이드의 합성)

  • Cho, Hyun-Ran;Kim, Sook-Hyun;Park, Byung-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.288-294
    • /
    • 2009
  • The platelet AlO(OH) nano colloids were prepared by hydrothermal reaction of the $\gamma-Al_2O_3$ obtained with dehydration of $\gamma$-AlO(OH) and dilute $CH_3COOH$ solution. In hydrothermal reaction process, reversible reaction was accompanied between $\gamma-Al_2O_3$ and AlO(OH), and hydrothermal reaction temperature, hydrothermal reaction time and $CH_3COOH$ concentration had an effect on the crystal structure, surface chemical property, surface area, pore characteristics and crystal morphology of the AlO(OH) nano colloid particles. In this study, it was investigated to the hydrothermal reaction condition of the AlO(OH) nano colloid for using catalyst support, heat resisting agent, adsorbents, binder, polishing agent and coating agent. The crystal structure, surface area, pore volume and pore size of the platelet AlO(OH) nano colloids were investigated by XRD, TEM, TG/DTA, FT-IR and $N_2$ BET method in liquid nitrogen temperature.

Chip-scale Integration Technique for a Microelectromechnical System on a CMOS Circuit (CMOS 일체형 미세 기계전자시스템을 위한 집적화 공정 개발)

  • ;Michele Miller;Tomas G. Bifano
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.218-224
    • /
    • 2003
  • This paper describes a novel MEMS integration technique on a CMOS chip. MEMS integration on CMOS circuit has many advantages in view of manufacturing cost and reliability. The surface topography of a CMOS chip from a commercial foundry has 0.9 ${\mu}{\textrm}{m}$ bumps due to the conformal coating on aluminum interconnect patterns, which are used for addressing each MEMS element individually. Therefore, it is necessary to achieve a flat mirror-like CMOS chip fer the microelectromechanical system (MEMS) such as micro mirror array. Such CMOS chip needs an additional thickness of the dielectric passivation layer to ease the subsequent planarization process. To overcome a temperature limit from the aluminum thermal degradation, this study uses RF sputtering of silicon nitride at low temperature and then polishes the CMOS chip together with the surrounding dummy pieces to define a polishing plane. Planarization reduces 0.9 ${\mu}{\textrm}{m}$ of the bumps to less than 25 nm.

Development and Characterization of High Temperature Superconducting Wire for Superconducting Cable System (초전도 케이블용 고온초전도 선재의 개발 및 특성평가)

  • Mean, Byoungjean;Lee, Jae-Hun;Kim, Young-Soon;Lee, Hunju;Moon, Seung-Hyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.151-156
    • /
    • 2015
  • In order to improve the properties of high-temperature superconducting wire for superconducting cable system, we optimized the electro-polishing (EP), ion-beam assisted deposition (IBAD), superconducting (SC) layer, and baking (heat) treatment. The buffer layer was deposited on electro-polished substrate with RMS roughness ($R_{RMS}$) less than 5 nm. The IBAD process was carried out at $V_{beam}$: 1100 V and $V_{accel}$: 850 V that resulted in highly crystalline film of $LaMnO_3$. Chemical composition of SC layer is key to higher critical current, and we found that composition can be determined by surface color of SC layer. We adopt a proprietary contorl system based on RGB analysis of the surface and achieved critical current of 150 A/4 mm-width. The proposed baking treatment resulted in decreasing of about 10% of fraction defects.

Optimization of Electropolishing Conditions with Statistical and Surface Analyses Using Taguchi Method for Austenitic Stainless Steel (다구찌 기법을 활용한 통계적·표면 분석에 따른 오스테나이트 스테인리스강의 전해연마조건 최적화 연구)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.360-371
    • /
    • 2022
  • Electropolishing has various parameters because an electrochemical reaction is applied. Accordingly, experiments to determine factors and levels of electropolishing conditions are in progress for various materials. The purpose of this investigation was to optimize conditions for electropolishing using the taguchi method for UNS S31603. Factors such as electrolyte composition ratio, electrolyte temperature, and electropolishing process time were selected. Electropolishing was optimized using analysis of variance (ANOVA), signal-to-noise ratio (the smaller the better characteristics), and surface analysis. Results of ANOVA revealed that only the electrolyte composition ratio among factors was effective for surface roughness. As a result of statistical analysis of the signal-to-noise ratio, the highest signal-to-noise ratio was calculated under electropolishing conditions with sulfuric acid and phosphoric acid ratio of 4:6, an electrolyte temperature of 75 ℃, and electropolishing process time of 7 minutes. In addition, the surface roughness after electropolishing under the above conditions was 0.121 ㎛, which was improved by more than 88% compared to mechanical polishing.

Optimal Electropolishing Condition of Austenitic Stainless Steel Specimens for Slow Strain Rate Tensile Testing (오스테나이트 스테인리스강 저속인장시험편의 최적 전해연마 특성)

  • Min-Jae Choi;Eun-Byeoul Jo;Dong-Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.457-465
    • /
    • 2023
  • Irradiation-assisted stress corrosion cracking (IASCC) is one of the main degradation mechanisms of austenitic stainless steels, which are used as reactor internal materials. Slow strain rate testing (SSRT) has been widely applied to evaluate the IASCC initiation characteristics of proton-irradiated tensile specimens. Tensile specimens require low surface roughness for micro-crack observation, and electropolishing is the most important specimen pre-treatment process used for this. In this study, optimal electropolishing conditions were examined through analyzing results of polarization experiments and surface roughness measurements after electropolishing. Corrosion cell and electropolishing equipment were fabricated for polarization tests and electropolishing experiments using SSRT specimens. The experimental parameters were electropolishing time, current density, electrolyte temperature, and stirring speed. The optimal electropolishing conditions for SSRT tensile specimens made of type 316 stainless steel were evaluated as a polishing time of 180 seconds, a current density of 0.15 A/cm2, an electrolyte temperature of 60 ℃, and a stirring speed of 200 RPM.