• Title/Summary/Keyword: Polishing methods

Search Result 203, Processing Time 0.022 seconds

A Study on the Construction of Cutting Scenario for Kori Unit 1 Bio-shield considering ALARA

  • Hak-Yun Lee;Min-Ho Lee;Ki-Tae Yang;Jun-Yeol An;Jong-Soon Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4181-4190
    • /
    • 2023
  • Nuclear power plants are subjected to various processes during decommissioning, including cutting, decontamination, disposal, and treatment. The cutting of massive bio-shields is a significant step in the decommissioning process. Cutting is performed near the target structure, and during this process, workers are exposed to potential radioactive elements. However, studies considering worker exposure management during such cutting operations are limited. Furthermore, dismantling a nuclear power plant under certain circumstances may result in the unnecessary radiation exposure of workers and an increase in secondary waste generation. In this study, a cutting scenario was formulated considering the bio-shield as a representative structure. The specifications of a standard South Korean radioactive waste disposal drum were used as the basic conditions. Additionally, we explored the hot-to-cold and cold-to-hot methods, with and without the application of polishing during decontamination. For evaluating various scenarios, different cutting time points up to 30 years after permanent shutdown were considered, and cutting speeds of 1-10nullm2/h were applied to account for the variability and uncertainty attributable to the design output and specifications. The obtained results provide fundamental guidelines for establishing cutting methods suitable for large structures.

Studies on Processing Techniques in Barley I. Effect of Polishing Conditions of Hulled Barley on Grain Shape and Polishing Properties (보리의 가공기술 개선연구 I. 겉보리의 도정조건에 따른 곡립특성 및 도정수율)

  • Kim, Y.S.;Lee, B.Y.;Bae, S.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.3
    • /
    • pp.281-286
    • /
    • 1988
  • These studies were conducted to find out the polishing methods that improve yield and quality of the polished barley. Four varieties of hulled barley, Dongbori 1. Bunong, Kangbori and Suwon 182 which were produced in Suwon, Korea in 1979, were subjected to this experiment. The polishing machine, manufactured by Satake Co, was used as test mill. Increasing the roller speed of polishing machine causes more polished barley in a unit period. The speed influenced more in length than thickness or width of grain. Therefore the shape of grain became bold type as the speed increased. The optimum roller speed was 1,300rpm in ideal shape of polished barley. The lowest hardness was observed in the husk layer and the hardness was found in the decreasing order of the aleurone, testa, peri carp and the endosperm layer. The thickness of bran layer, weight of 1,000 kernel and hardness of polished barley were greatly different according to barley varieties. Also the length, thickness, width and the ratio of length to width of barley grain were significantly different in barley varieties. The ratio of length to width of the polished barley was 1.59 in Suwon 182, 1.53 in Bunong, 1.51 in Kangbori and 1.26 in Dongbori 1.

  • PDF

The efficacy of different implant surface decontamination methods using spectrophotometric analysis: an in vitro study

  • Roberto Giffi;Davide Pietropaoli;Leonardo Mancini;Francesco Tarallo;Philipp Sahrmann;Enrico Marchetti
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.4
    • /
    • pp.295-305
    • /
    • 2023
  • Purpose: Various methods have been proposed to achieve the nearly complete decontamination of the surface of implants affected by peri-implantitis. We investigated the in vitro debridement efficiency of multiple decontamination methods (Gracey curettes [GC], glycine air-polishing [G-Air], erythritol air-polishing [E-Air] and titanium brushes [TiB]) using a novel spectrophotometric ink-model in 3 different bone defect settings (30°, 60°, and 90°). Methods: Forty-five dental implants were stained with indelible ink and mounted in resin models, which simulated standardised peri-implantitis defects with different bone defect angulations (30°, 60°, and 90°). After each run of instrumentation, the implants were removed from the resin model, and the ink was dissolved in ethanol (97%). A spectrophotometric analysis was performed to detect colour remnants in order to measure the cumulative uncleaned surface area of the implants. Scanning electron microscopy images were taken to assess micromorphological surface changes. Results: Generally, the 60° bone defects were the easiest to debride, and the 30° defects were the most difficult (ink absorption peak: 0.26±0.04 for 60° defects; 0.32±0.06 for 30° defects; 0.27±0.04 for 90° defects). The most effective debridement method was TiB, independently of the bone defect type (TiB vs. GC: P<0.0001; TiB vs. G-Air: P=0.0017; TiB vs. GE-Air: P=0.0007). GE-Air appeared to be the least efficient method for biofilm debridement. Conclusions: T-brushes seem to be a promising decontamination method compared to the other techniques, whereas G-Air was less aggressive on the implant surface. The use of a spectrophotometric model was shown to be a novel but promising assessment method for in vitro ink studies.

Effect of surface finishing treatments on the color stability of CAD/CAM materials

  • Ozen, Funda;Demirkol, Nermin;Oz, Ozge Parlar
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.150-156
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the effect of different surface finishing processes on the color stabilities of lithium disilicate glass-ceramics, zirconia-reinforced lithium silicate ceramics, and resin nanoceramics after artificial ageing. MATERIALS AND METHODS. 216 samples were prepared from 3 different CAD/CAM materials (LAVA Ultimate, IPS e.max CAD, VITA Suprinity) with A1 HT color at a size of 14 × 12 mm and a thickness of 0.5 ± 0.05 mm. Color measurements of the samples were performed with a spectrophotometer using color parameters and CIE Lab color system on a gray backing between baseline color and after 5000 cycles of artificial ageing in 4 stages (i.e. the first measurement before the treatment, the second measurement after polishing, the third measurement after cement application, and the fourth measurement after artificial ageing). The results were evaluated using the Variance analysis and Fisher's LSD test. RESULTS. Resin nanoceramics (LU) exhibited higher color change values than zirconia-reinforced lithium silicate (VS) and lithium disilicate (EC) ceramics after artificial ageing. Manual polishing and glazing resulted in similar color change for LU and VS (P>.05). In the EC group, glazing provided statistically different results as compared to the manual polishing and control groups (P<.05). Among the ceramic groups, color change values of the subgroup, which was treated by glazing, of the zirconia-reinforced lithium silicate (VS) and lithium disilicate (EC) samples were below the clinically acceptable level (ΔE < 3.5). CONCLUSION. The lowest color change for all stages was observed in Vita Suprinity.

The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core

  • Kulunk, Tolga;Kulunk, Safak;Baba, Seniha;Ozturk, Ozgur;Danisman, Sengul;Savas, Soner
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.382-387
    • /
    • 2013
  • PURPOSE. Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core. MATERIALS AND METHODS. Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 ${\mu}m$ aluminum oxide particles ($Al_2O_3$), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 ${\mu}m$ $Al_2O_3$ + Al coating and air particle abrasion with 50 ${\mu}m$ $Al_2O_3$ + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (${\alpha}$=.05). RESULTS. The highest bond strengths were obtained by air abrasion with 50 ${\mu}m$ $Al_2O_3$, the lowest bond strengths were obtained in polishing + Al coating group (P<.05). CONCLUSION. Al and AlN coatings using the reactive magnetron sputtering technique were found to be ineffective to increase the bond strength of adhesive resin cement to zirconia core.

THE CHANGE IN SURFACE CONVERSION AND DISCOLORATION IN DENTAL RESTORATIVE COMPOSITE RESIN UNDER DIFFERENT POLISHING METHODS; THE CORRELATION BETWEEN SURFACE CONVERSION AND SURFACE DISCOLORATION (수복용복합레진의 표면처리방법에 따른 표면중합률 및 변색정도의 변화와 그 상관관계에 대한 연구)

  • Park, Sung-Ho;Noh, Byung-Duk;Kim, Mo-Ran;Ahn, Hyun-Jung
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.482-486
    • /
    • 2000
  • The purpose of the present study was first, to evaluate the relationship between composite surface conversion and surface discoloration, second, to know if there was difference in surface discoloration between celluloid-strip-finished composite surface and polished surface. In addition, the discoloration of composite surface was also evaluated with visual inspection or digital camera with high resolution monitor, Z100, Tetric Ceram, Spectrum, and Aelitfil were used. The composite surfaces were celluloid-strip finished (group 1), polished (group 2), celluloid-strip finished under nitrogen gas purging (group 3) or only light cured without finishing or polishing under nitrogen gas purging (group 4). The microhardness of each samples were also measured in each group. The samples of each group were also divided into 4 subgroup whether they were immediately placed in disclosing solution (0.2% Elythrosin, pH 7.0) (subgroup1), 1 day after light curing(subgroup 2), 3day after light curing(subgroup 3) or 7 day after light curing(subgroup 4). The computer controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$, $b^*$). The amounts of color difference were compared. The results were as follows; 1. There was no difference in discoloration between celluloid strip finished composite surface and polished surface. 2. The samples discolored more when they were placed in disclosing solution immediately after polymerization than other groups. 3. When the samples were light cured under nitrogen gas purging and without polishing process, they discolored more than other groups even though they showed higher micro hardness. 4. With visual inspection or digital camera, only a limited information was available in detecting composite surface discoloration.

  • PDF

SURFACE ROUGHNESS OF UNIVERSAL COMPOSITES AFTER POLISHING PROCEDURES (전.구치 겸용 혼합형 복합레진의 두 가지 연마법에 따른 표면조도)

  • Lee, Jae-Yong;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.5
    • /
    • pp.369-377
    • /
    • 2003
  • The aim of this study was to evaluate the effect of two polishing methods and chemical conditioning on the surface of hybrid composites. Ninety cylindrical specimens (diameter:8mm, depth:2mm) were made with three hybrid composites-Filtek Z250, Tetric Ceram. DenFil. Specimens for each composite were randomly divided into three treatment subgroups $^{\circled1}$ Mylar strip (no treatment). $^{\circled2}$ Sof-Lex XT system, $^{\circled3}$ PoGo system. Average surface roughness(Ra) was taken using a surface profilometer at the time of setting and after immersion into 0.02N lactic acid for 1 week and 1 month. Representative specimens were examined by scanning electron microscopy. The data were analyzed using ANOVA and Scheffe's tests at 0.05% significance level. The results were as follows:1. Mylar strip resulted in smoother surface than PoGo and Sof-Lex system (p<0.001). Sof-Lex system gave the worst results. 2. Tetric Ceram was smoother than DenFil and Z250 when cured under only mylar strip. However, it was significantly rougher than other materials when polished with PoGo system. 3. All materials showed rough surface after storage in 0.02N lactic acid, except groups polished with a PoGo system. The PoGo system gave a superior polish than Sof-Lex system for the three composites. However. the correlation to clinical practice may be limited, since there are several processes. such as abrasive, fatigue, and corrosive mechanisms. Thus. further studies are needed for polishing technique under in vivo conditions.

Chemical Mechanical Polishing: A Selective Review of R&D Trends in Abrasive Particle Behaviors and Wafer Materials (화학기계적 연마기술 연구개발 동향: 입자 거동과 기판소재를 중심으로)

  • Lee, Hyunseop;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.274-285
    • /
    • 2019
  • Chemical mechanical polishing (CMP), which is a material removal process involving chemical surface reactions and mechanical abrasive action, is an essential manufacturing process for obtaining high-quality semiconductor surfaces with ultrahigh precision features. Recent rapid growth in the industries of digital devices and semiconductors has accelerated the demands for processing of various substrate and film materials. In addition, to solve many issues and challenges related to high integration such as micro-defects, non-uniformity, and post-process cleaning, it has become increasingly necessary to approach and understand the processing mechanisms for various substrate materials and abrasive particle behaviors from a tribological point of view. Based on these backgrounds, we review recent CMP R&D trends in this study. We examine experimental and analytical studies with a focus on substrate materials and abrasive particles. For the reduction of micro-scratch generation, understanding the correlation between friction and the generation mechanism by abrasive particle behaviors is critical. Furthermore, the contact stiffness at the wafer-particle (slurry)-pad interface should be carefully considered. Regarding substrate materials, recent research trends and technologies have been introduced that focus on sapphire (${\alpha}$-alumina, $Al_2O_3$), silicon carbide (SiC), and gallium nitride (GaN), which are used for organic light emitting devices. High-speed processing technology that does not generate surface defects should be developed for low-cost production of various substrates. For this purpose, effective methods for reducing and removing surface residues and deformed layers should be explored through tribological approaches. Finally, we present future challenges and issues related to the CMP process from a tribological perspective.

Preparation of Cross-sectional Specimen for High Resolution Observation of Coating Structure and Visualization of Styrene/butadiene Latex Binder (고배율 도공층 구조 및 S/B latex 분포 분석을 위한 도공층 횡단면 제작)

  • Kim, Chae-Hoon;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • To characterize the coating structure, diverse methods such as mercury intrusion, nitrogen adsorption and oil absorption methods have been developed and widely employed. These indirect techniques, however, have some limitation to explain the actual coating structure. Recently microscopic observation methods have been tried for analyzing structural characteristics of coating layers. Preparation of the undamaged cross section of a coating layer is essential for obtaining high quality image for analysis. In this study, distortion-free cross-section of the coating layer was prepared using a grinding and polishing technique. The coated paper was embedded in epoxy resin and cured. After curing the resin block it was ground with abrasive papers and then polished with diamond particle suspension and nylon cloth. Polished coating layer was sufficient enough to obtain undamaged cross sectional images with scanning electron microscope under backscattered electron image mode. In addition, the SEM images allowed distinction of the coating layer components. Also S/B latex film formed between pigment particles was visualized by osmium tetroxide staining. Pore size distribution and pore orientation were evaluated by image analysis from SEM cross-sectional images.

A Study on Restoration Technology of Unit Injector Spill Valve for Injection System of Commercial Diesel Engine (상용차 디젤의 연료분사장치 유닛 인젝터 핵심부품인 스필 밸브의 성능 복원 관한 연구)

  • Lee, Chunggeun;Lee, Jeongho;Lee, Daeyup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.389-396
    • /
    • 2017
  • Restorations of automotive parts have been done ever since the first vehicle was produced. Because the most expensive parts of a vehicle are in the engine system, there have been various restoration methods developed for engine parts. In the case of commercial diesel engines, the fuel injection device is a key and expensive component. It also has a significant effect on vehicle performance. In particular, reduced engine power and increased exhaust gas emissions may result from mechanical damage due to abrasion of the spill valve in the fuel injection system of a diesel engine. In this paper, restoration techniques for damaged parts are applied to restore the abrasion of a spill valve of fuel injection, also called as the "unit injector", of commercial diesel engines. In order to recover the damage, optimized polishing techniques using hard-metal and coating processes are applied. To evaluate restoration techniques for the spill valve, performance and durability tests are performed on a test bench.