• Title/Summary/Keyword: Policosanols

Search Result 5, Processing Time 0.02 seconds

Metabolic profiling reveals an increase in stress-related metabolites in Arabidopsis thaliana exposed to honeybees

  • Baek, Seung-A;Kim, Kil Won;Kim, Ja Ock;Kim, Tae Jin;Ahn, Soon Kil;Choi, Jaehyuk;Kim, Jinho;Ahn, Jaegyoon;Kim, Jae Kwang
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.141-151
    • /
    • 2021
  • Insects affect crop harvest yield and quality, making plant response mechanisms to insect herbivores a heavily studied topic. However, analysis of plant responses to honeybees is rare. In this study, comprehensive metabolic profiling of Arabidopsis thaliana exposed to honeybees was performed to investigate which metabolites were changed by the insect. A total of 85 metabolites-including chlorophylls, carotenoids, glucosinolates, policosanols, tocopherols, phytosterols, β-amyrin, amino acids, organic acids, sugars, and starch-were identified using high performance liquid chromatography, gas chromatography-mass spectrometry, and gas chromatography-time-of-flight mass spectrometry. The metabolite profiling analysis of Arabidopsis exposed to honeybees showed higher levels of stress-related metabolites. The levels of glucosinolates (glucoraphanin, 4-methoxyglucobrassicin), policosanols (eicosanol, docosanol, tricosanol, tetracosanol), tocopherols (β-tocopherol, γ-tocopherol), putrescine, lysine, and sugars (arabinose, fructose, glucose, mannitol, mannose, raffinose) in Arabidopsis exposed to honeybees were higher than those in unexposed Arabidopsis. Glucosinolates act as defensive compounds against herbivores; policosanols are components of plant waxes; tocopherols act as an antioxidant; and putrescine, lysine, and sugars contribute to stress regulation. Our results suggest that Arabidopsis perceives honeybees as a stress and changes its metabolites to overcome the stress. This is the first step to determining how Arabidopsis reacts to exposure to honeybees.

Effects of genotype and environmental factors on content variations of the bioactive constituents in rice seeds (벼의 유전형질과 재배환경 요인이 기능성물질 함량 변이에 미치는 영향 비교)

  • Soo-Yun Park;Hyoun-Min Park;Jung-Won Jung;So Ra Jin;Sang-Gu Lee;Eun-Ha Kim;Seonwoo Oh
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.429-438
    • /
    • 2022
  • The composition of crops reveal natural variation according to genetic characteristics and environmental factors such as the cultivated regions. For comparative investigation of the impact of genetic difference and environmental influence on the levels of bioactive components in rice seeds, 23 cultivars including indica, japonica, and tongil rice were grown in two location in Korea (Jeonju and Cheonan) for two years (2015 and 2016). Sixteen compounds consisting of tocopherols, tocotrienols, phytosterols, and policosanols were identified from 368 rice samples and the compositional data were subjected to data mining processes including principal component analysis and Pearson's correlation analysis. Under 4 different environmental conditions (Jeonju in 2015, Cheonan in 2015, Jeonju in 2016, Cheonan in 2016), the natural variability of rice seeds showed that the genetic background (indica vs japonica vs tongil) had more impact on the compositional changes of bioactive components compared to the environments. Especially, the results of correlation analysis revealed negative correlation between α-, β-tocopherols and γ-, δ-tocopherols as a representative genetic effect that did not changed by the environmental influence.

Bioactive Characteristics of Sorghum Extract/Poly(vinyl alcohol) Composite Nanoweb Produced by Electrospinning (전기방사에 의해 제조된 수수 추출물 함유 폴리비닐알코올 복합 나노 섬유의 생리활성 특성)

  • Lee, Hyun Ju;Jeon, Jae Woo;Jung, So Yeon;Choi, Jin Hyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.323-331
    • /
    • 2019
  • Sorghum is a rich source in phytochemicals, such as tannins, phenolic acids, anthocyanins, phytosterols and policosanols. Sorghum has been known to have antimicrobial, antiinflammatory, antioxidant properties. In this study, poly(vinyl alcohol)(PVA)-sorghum extract(SE) composite nanoweb was produced by electrospinning and its characteristics including bioactivities were investigated. The SE had antimicrobial and antiinflammatory activities as well as a reduced cytotoxicity. The PVA-SE nanoweb had a highly enhanced antimicrobial activity compared to PVA nanoweb. The amount of proinflammatory cytokine released from macrophages treated with the PVA-SE nanoweb was reduced. The PVA-SE nanoweb can be a potential candidate for medical and cosmeceutical materials providing antimicrobial and antiinflammatory activities with a low degree of cytotoxicity.

Changes in Nutraceutical Lipid Constituents of Pre- and Post-Geminated Brown Rice Oil (발아 전후 현미유에서의 기능성 지질성분 변화)

  • Kwak, Ji-Eun;Yoon, Sung-Won;Kim, Dae-Jung;Yoon, Mi-Ra;Lee, Jeong-Heui;Oh, Sea-Kwan;Kim, In-Hwan;Lee, Jun-Soo;Lee, Jeom-Sig;Chang, Jae-Ki
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.591-600
    • /
    • 2013
  • This study investigated the changes in the nutraceutical lipid components of brown rice oil after germination. Four different high-yielding cultivars (Dasan1, Segyejinmi, Hanareum1 and Hanareum2) of Korean brown rice were selected and brown rice oil was extracted from each cultivar before and after germination. Free fatty acid, squalene, policosanols, and isomers of phytosterol were analyzed using GC, and isomers of tocols (tocopherol and tocotrienol) and ${\gamma}$-oryzanol were quantified using HPLC from both brown rice oil (BRO) and germinated brown rice oil (GBRO). The contents of phytosterol isomers, campesterol, stigmasterol, and ${\beta}$-sitosterol were increased by 8.3%, 31.6%, 3.3% in GBRO, respectively. Furthermore, the squalene content showed the highest increase of up to 2.4 fold in GBRO compared to BRO. In addition, linoleic and linolenic acid composition increased whereas oleic and palmitic acid decreased in the GRBO. However, the contents of tocols (tocopherol and tocotrienol) in GBRO were lower than those in BRO, and there was no significant difference in policosanol and ${\gamma}$-oryzanol between GBRO and BRO. These results suggest that GBRO has the potential as a healthy and functional source due to its lipid profile on improved lipid metabolism.

Influence of Drought Stress Treatment on Saponarin Content during the Growing Period of Barley Sprouts (새싹보리 재배기간 중 수분스트레스 처리가 사포나린 함량에 미치는 영향)

  • Yoon, Young-Eun;Kim, Song Yoeb;Choe, Hyeonji;Cho, Ju Young;Seo, Woo Duck;Kim, Young-Nam;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.290-294
    • /
    • 2021
  • BACKGROUND: Barley sprouts contain a large number of secondary metabolites such as polyphenols, saponarin, and policosanols. The synthesis of such secondary metabolites occurs as a defense mechanism against external environmental stresses. In particular, it has been widely known that drought stress (DS) increases the content of flavonoids in plants. The objective of this study was to investigate the effects of drought stress treatment on the saponarin content in barley sprouts during the growing period. METHODS AND RESULTS: In this study, changes in saponarin content with different DS exposure periods and times were evaluated under the hydroponic system. For establishing different DS treatment periods, water supply was stopped for 1, 2, and 3 days, once leaf length was at 10 cm. To control different DS treatment times, water supply was stopped for 2 days, once leaf lengths were 5, 10, and 15 cm. As a result, the water potential of barley sprouts decreased from -0.8 MPa (before DS treatment) to -1.2, -2.4, and -3.2 MPa (after DS treatment), and reversely recovered to -0.8 MPa after re-irrigation. When 10 cm leaves were subjected to DS for 1 and 2 days, the saponarin content increased by 12 and 10%, respectively, while it increased by 19% when DS was applied to the 5 cm leaves. CONCLUSION(S): The results of this study suggest that drought stress at the early stage of growth (5 cm) is most helpful to increase the saponarin content of barley sprouts.