• Title/Summary/Keyword: Pole Angle

Search Result 115, Processing Time 0.026 seconds

POSTOPERATIVE POSITIONAL CHANGE OF CONDYLE AFTER BILATERAL SAGITTAL SPLIT RAMUS OSTEOTOMY ASSOCIATED WITH MANDIBULAR ASYMMETRY (하악골 비대칭 환자의 양측성 하악골 시상분할 골절단술 후 하악과두의 위치 변화)

  • Lee, Sung-Keun;Kim, Kyung-Wook;Kim, Chul-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.5
    • /
    • pp.359-367
    • /
    • 2004
  • Purpose: After the surgical correction with sagittal split ramus osteotomy, the position of the mandibular condyle in the glenoid fossa and the proximal segment of the mandible change because of bony gap between proximal and distal segment, especially in case of mandibular setback asymmetrically. In this study, positional changes in the condyle and proximal segment after BSSRO were estimated in the mandibular asymmetry patient by analyzing the in submentovertex view and P-A cephalogram for identification of ideal condylar position during surgery. Patients and Methods: The 20 patients were selected randomly who visit Dankook Dental Hospital for mandibular asymmetry. Bilateral sagittal split ramus osteotomy with rigid fixation was performed and P-A cephalogram and submentovertex view was taken at the time of preoperative, immediate postoperative, 3 month postoperative period. Results: Intercondylar length and transverse condylar angle was increased due to inward rotation of proximal segment and anteromedial rotation of lateral pole of condyle head. The condylar position had a tendency to return to the preoperative state and after 3 months return up to about half of the immediate post-operative changes, and all the results showed more changes in asymmetry patient and deviated part of the mandible. Conclusion: Based on all these results above, surgeon should make efforts to have a precise preoperative analysis and to have a ideal condylar position during rigid fixation after BSSRO.

The effect of texture of an extruded OFHC Cu rod on its sliding wear characteristics (압출된 OFHC Cu 봉재의 집합조직과 마멸거동)

  • Yi, S.K.;Kim, Y.S.;Cho, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.354-357
    • /
    • 2009
  • The effect of texture of an extruded OFHC Cu rod on its sliding wear has been explored. Disk specimens with three different orientations were machined from the Cu rod for the wear test; surfaces of the disk were perpendicular ($0^{\circ}$), inclined with a specific angle ($45^{\circ}$), and parallel ($90^{\circ}$) to the extrusion axis of the rod. The texture was analyzed using an X-ray goniometer by measuring {111}, {200}, and {220} pole figures of each specimen. The analyzed texture was correlated with wear-test results of the Cu specimen. Dry sliding wear tests were performed at room temperature using a pin-on-disk wear tester against an Al2O3 ball. Applied load, sliding distance, sliding speed were fixed as 20 N, 200 m, and 0.5 m/sec, respectively. The $45^{\circ}$-inclined (to the extrusion axis) disk specimen showed the lowest wear resistance with the least data scatters. It has been found that distribution of cube texture strongly influences wear rate of the extruded Cu rod.

  • PDF

Analysis of Starting Torque and Speed Characteristics for Squirrel Cage Induction Motor According to Material Properties of Rotor Slot

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.328-333
    • /
    • 2015
  • Squirrel cage induction motors have mostly been used for their small capacity because the starting torque is smaller than the starting current during start-up. However, as more and more mid-to-large capacity motors are developed, the demands for improvements in performance characteristics have also increased. In this study, the starting characteristics of squirrel cage induction motors were analyzed based on the rotor materials and shapes using a finite element method to provide design data suitable for different use purposes and capacities. We further completed analysis by combining electromagnetic equations deduced from Maxwell’s equations and the circuit equations of stators and rotors. A moving coordinator was introduced to rotate the rotor during the analysis, and the torques calculated via the finite element method were combined with the motion equations to calculate the position and angular velocity of the rotors at the next time, thereby analyzing the transient characteristics. The analysis results of the transient characteristics were applied to a 3-phase 4-pole 5-hp induction motor to calculate the starting torque, speed, and rotation angle of the rotors. In the reference model, the materials and shapes of the rotor slot were changed to copper and silicon copper and a deep slot, shallow slot, and long-neck-shaped slot.

Design of low-noise II R filter with high-density and low-power properties (고집적, 저전력 특성을 갖는 저잡음 IIR 필터 설계)

  • Bae Sung-hwan;Kim Dae-ik
    • The KIPS Transactions:PartA
    • /
    • v.12A no.1 s.91
    • /
    • pp.7-12
    • /
    • 2005
  • Scattered look-ahead(SLA) pipelining method can be efficiently used for high-speed or low-power applications of digital II R filters. Although the pipelined filters are guaranteed to be stable by this method, these filters suffer from large roundoff noise when the poles are crowded within some critical regions. An angle and radius constrained II R fille. design approach using modified Remez exchange algorithm and least squares algorithm is proposed to avoid tight pole-crowding in pipelined filters, resulting in improved frequency responses and reduced coefficient sensitivities. Experimental results demonstrate that our proposed method leads to chip area reduction by $33{\%}$ and low power by $45{\%}$ against the conventional method.

Position and Orientation Estimation of a Maneticalluy Guided-Articulated Vehicle (자기적 안내제어시스템을 이용하는 굴절차량의 위치 및 방위각 추정)

  • Yun, Kyong-Han;Kim, Young-Chol;Min, Kyung-Deuk;Byun, Yeun-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1915-1923
    • /
    • 2011
  • For automated guidance control of a magnetically guided-all wheel steered vehicle, it is necessary to have information about position and orientation of the vehicle, and deviations from the reference path in real time. The magnet reference system considered here consists of three magnetic sensors mounted on the vehicle and magnetic markers, which are non-equidistantly buried in the road. This paper presents an observer to estimate such position and orientation at the center of gravity of the vehicle. This algorithm is based on the simple kinematic model of vehicle and uses the data of wheel velocity, steering angle, and the discrete measurements of marker positions. Since this algorithm requires the exact values of initial states, we have also proposed an algorithm of determining the initial position and orientation from the 16 successive magnet pole data, which are given by the magnetic measurement system(MMS). The proposed algorithm is capable of continuing to estimate for the case that the magnetic sensor fail to measure up to three successive magnets. It is shown through experimental data that the proposed algorithm works well within permissible error range.

Analysis of Harmonic Currents Propagation on the Self-Excited Induction Generator with Nonlinear Loads

  • Nazir, Refdinal
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1935-1943
    • /
    • 2014
  • In recent years, the induction machines are increasingly being used as self-excited induction generators (SEIG). This generator is especially widely employed for small-scale power plants driven by renewable energy sources. The application of power electronic components in the induction generator control (IGC) and the loading of SEIG using nonlinear loads will generate harmonic currents. This paper analyzes the propogation of harmonic currents on the SEIG with nonlinear loads. Transfer function method in the frequency domain is used to calculate the gain and phase angle of each harmonic current component which are generated by a nonlinear loads. Through the superposition approach, this method has also been used to analyze the propagation of harmonic currents from nonlinear load to the stator windings. The simulation for the propagation of harmonic currents for a 4 pole, 1.5 kW, 50Hz, 3.5A, Y-connected, rotor-cage SEIG with energy-saving lamps, have provided results almost the same with the experiment. It can prove that the validity of the proposed models and methods. The study results showed that the propagation of harmonic currents on the stator windings rejects high order harmonics and attenuates low order harmonics, consequently THDI diminish significantly on the stator windings.

The Underwater Propagation of the Noise of Ship's Engine (기관소음의 수중전파에 관한 연구)

  • 박중희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.16 no.2
    • /
    • pp.69-76
    • /
    • 1980
  • This paper describes the measurement of the underwater noises produced by the engine vibration around the engine room of stern trawler MIS Sae-Ba-Da(2275GT, 3,600 PS) and pole kner M/S Kwan-Ak-San (243 GT, 1000 PS) while the ship is stopping. The underwater noise pressure level was measured with the underwater level meter of which measuring range is 100 to 200 dB(re bLPa). A and B denotes the maximum pressure level measured at right beneath the bottom of the engine room, while the main engine of the Sae-Ba-Da revoluted at 750 and 500 rpm, respectively. C denotes that of the main engine of the Kwan-Ak-San revoluted at 350 rpm, and D that of the generator of the Sae-Ba-Da revoluted at 720 rpm. Thus A, B, C and D were set for the standard sound source for the experiment. The results obtained are as follows: 1. The noise Pressure level at A, B, C and D were 170.5,165,153 and 158dB, respectively. 2. When the check points distanted vertically 1, 10, 20, 30, 40, 50m from the sound source, the underwater noise presure levels were 170.5, 155, 148, 144 and 138 dB and the directional angle was 116\ulcorner in case of A. 3. The sound level attenuated at the rate of 20dB per 10" meters of the horizontal distance from the sound sources. 4. The frequency distribution of the noise was 100Hz to 10KHz and predominant frequency was 700 to 800Hzminant frequency was 700 to 800Hz

  • PDF

New Single-stage Interleaved Totem-pole AC-DC Converter for Bidirectional On-board Charger

  • ;Kim, Sang-Jin;Kim, Byeong-U;Sin, Yang-Jin;Choe, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.192-194
    • /
    • 2018
  • In this paper a new single-stage ac-dc converter with high frequency isolation and low components count is introduced. The proposed converter is constructed using two interleaved boost circuits in the grid side and non-regulating full bridge in the DC side. An optimized switching is implemented on the two interleaved boost circuits resulting in a ripple-free grid current without a ripple cancellation network; hence very small filter inductors are used. A simple and reliable closed-loop control system is easily implemented, since the phase-shift angle is the only independent variable. Moreover, current imbalance is avoided in the presented topology without current control loop in each phase. The proposed charger charges the battery with a sinusoidal-like current instead of a constant direct current. ZVS turn on of all switches is achieved throughout the operation in both directions of power flow without any additional components.

  • PDF

Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection (고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감)

  • Kwon, Soon-O;Lee, Jeong-Jong;Lee, Geun-Ho;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

An Adaptive UPFC Based S tabilizer forDamping of Low Frequency Oscillation

  • Banaei, M.R.;Hashemi, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.197-208
    • /
    • 2010
  • Unified power flow controller (UPFC) is the most reliable device in the FACTS concept. It has the ability to adjust all three control parameters effective in power flow and voltage stability. In this paper, a linearized model of a power system installed with a UPFC has been presented. UPFC has four control loops that by adding an extra signal to one of them, increases dynamic stability and load angle oscillations are damped. In this paper, after open loop eigenvalue (electro mechanical mode) calculations, state-space equations have been used to design damping controller and it has been considered to influence active and reactive power flow durations as the input of damping controller, in addition to the common speed duration of synchronous generators as input damper signal. To increase stability, further Lead-Lag and LQR controllers, a novel on-line adaptive controller has been used analytically to identify power system parameters. Closed-loop calculations of the electro mechanical mode verify the improvement of system pole placement after controller designing. Suitable operation of adaptive controller to decrease rotor speed oscillations against input mechanical torque disturbances is confirmed by the simulation results.