• Title/Summary/Keyword: Polarized microscope

Search Result 103, Processing Time 0.021 seconds

MORPHOLOGICAL CHARACTERISTICS OF ODONTOBLAST IN NFI-C KNOCK/OUT MICE (Nuclear Factor I-C 결손 생쥐에서 상아모세포의 형태학적 특징)

  • Ko, Seung-Bak;Lee, Chang-Seop;Lee, Nan-Young;Lee, Sang-Ho;Kim, Heung-Joong;Park, Joo-Cheol
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.181-191
    • /
    • 2006
  • NFI-C null mice demonstrated aberrant odontoblast differentiation and thus abnormal dentin formation while other tissues/organs in the body, including ameloblasts, appear to be unaffected and normal. However little is known about the mechanism of NFI-C function in odontoblast differentiation and dentin formation. Odontoblasts are tall, highly polarized cells that are responsible for formation and maintenance of the predentin and dentin. An indication of their polarity is the acquisition of specialized intercellular junctions. As preodontoblasts differentiate into odontoblasts, they are Joined and attached at the apical end by well developed terminal webs of cytoskeletal actins, and associated tight as well as adherent njunctions. In this study, in order to investigate if disruption of the NFI-C gene interferes with formation of a specific or other structural proteins of the intercellular junctions, we examined morphological characteristic of the aberrant odontoblast in NFI-C null mice using light and electron microscope. In addition, we determined the expression of major structural proteins of intercellular junctions, ZO-1 and occludin, during the differentiation of odontoblasts using immunohitochemistry. The results were as follows : 1. In light microscopy, abnormal odontoblasts of incisors of the NFI-C null mice were round in shape, lost their polarity, and trapped in osteodentin-like mineralized tissue. Mutant molars have relatively normal crowns, but short and abnormal differentiating adontoblasts in root formation area. 2. Electron microscopy of abnormal odontoblasts revealed the dissociation of the round osteoblast-like cells, the loss of their cellular polarity, and the absence of an intercellular junctional complex known as the tight junctions. 3. A mutant incisor showed labeling for ZO-1 at the proximal and distal ends of secreting ameloblasts, while staining for ZO-1 was not observed in the abnormal odontoblasts. 4. A normal incisor showed immunoreactivity for occludin in the differentiating odontoblasts. However, staining for occludin was not observed in the abnormal odontoblasts of mutant incisor. These results suggest that NFI-C gene causes dissociation of odontoblast and thus abberant odontoblast differentiation and abnormal dentin formation by interfering with the formation of intercellular junctions.

  • PDF

Phase Behavior Study of Fatty Acid Potassium Cream Soaps (지방산 칼륨 Cream Soaps 의 상거동 연구)

  • Noh, Min Joo;Yeo, Hye Lim;Lee, Ji Hyun;Park, Myeong Sam;Lee, Jun Bae;Yoon, Moung Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • The potassium cream soap with fatty acid called cleaning foam has a crystal gel structure, and unlike an emulsion system, it is weak to shear stress and shows characteristics that are easily separated under high temperature storage conditions. The crystal gel structure of cleansing foams is significantly influenced by the nature and proportion of fatty acids, degree of neutralization, and the nature and proportion of polyols. In order to investigate the effect of these parameters on the crystal gel structure, a ternary system consisting of water/KOH/fatty acid was investigated in this study. The investigation of differential scanning calorimeter (DSC) revealed that the eutectic point was found at the ratio of myristic acid (MA) : stearic acid (SA) = 3 : 1 and ternary systems were the most stable at the eutectic point. However, the increase in fatty acid content had little effect on stability. On the basis of viscosity and polarized optical microscopy (POM) measurements, the optimum degree of neutralization was found to be about 75%. The system was stable when the melting point (Tm) of the ternary system was higher than the storage temperature and the crystal phase was transferred to lamellar gel phase, but the increase in fatty acid content had little effect on stability. The addition of polyols to the ternary system played an important role in changing the Tm and causing phase transition. The structure of the cleansing foams were confirmed through cryogenic scanning electron microscope (Cryo-SEM), small and wide angle X-ray scattering (SAXS and WAXS) analysis. Since butylene glycol (BG), propylene glycol (PG), and dipropylene glycol (DPG) lowered the Tm and hindered the lamellar gel formation, they were unsuitable for the formation of stable cleansing foam. In contrast, glycerin, PEG-400, and sorbitol increased the Tm, and facilitated the formation of lamellar gel phase, which led to a stable ternary system. Glycerin was found to be the most optimal agent to prepare a cleansing foam with enhanced stability.

A Study on Smalt Pigments Used in Large Buddhist Paintings in the 18th and 19th Centuries (18~19세기 대형 불화에 사용된 회청(Smalt) 안료에 관한 연구)

  • YUN, Jihyeon;KIM, Sojin;KIM, Gyuho
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.120-129
    • /
    • 2022
  • The purpose of this study is to analyze the chemical composition of smalt pigments used in 10 large Buddhist paintings in the Joseon Dynasty using energy dispersive X-ray spectroscopy, and to clarify the material and characteristics by observing morphological characteristics using polarized light microscopy and a scanning electron microscope. Through chemical composition analysis, the smalt of all 10 large Buddhist paintings is judged to be potash glass using SiO2 as a former and K2O as a flux. In addition to the components related to cobalt ore used as a colorant, the paintings were found to contain high levels of As2O3, BaO, and PbO. The smalt particles did not have specific forms, and were blue in color, with various chromaticity. In some particles, conchoidal fracture, spherical bubbles, and impurities were observed. Through backscattered electron images, it was found that the smalt from paintings produced in the early 18th century AD had a high level of As, but the smalt from paintings produced from the mid-18th century AD onwards exhibited various contrast differences from particle to particle, and there was smalt with high levels of As, Ba, and Pb. Through the above results, the large Buddhist paintings in the Joseon Dynasty are divided into three smalt types. Type A is a type with high As2O3, type B is a type with high BaO, and type C is a type with high PbO. Looking at the three types of smalt pigments by the period of production, although some in-between periods were not detected, type A was confirmed to have been used from 1705 to 1808, while type B and type C were shown to have appeared in 1750 and used until 1808. This reveals that only one type of smalt was used until the early 18th century AD, and from the middle of the 18th century AD, several types of smalt were mixed and used in one large Buddhist painting. Studies such as this research are expected to provide insights into the characteristics of the smalt pigments used to produce large Buddhist paintings at the time.