• Title/Summary/Keyword: Polarization spectroscopy

Search Result 309, Processing Time 0.027 seconds

Anodization of Aluminium Samples in Boric Acid Solutions by Optical Interferometry Techniques

  • Habib, K.
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.217-221
    • /
    • 2005
  • In the present investigation, holographic interferometry was utilized for the first time to monitor in situ the thickness of the oxide film of aluminium samples during anodization processes in boric acid solutions. The anodization process (oxidation) of the aluminium samples was carried out by the technique of the electrochemical impedance spectroscopy(EIS), in different concentrations of boric acid (0.5-5.0% $H_3BO_3$) at room temperature. In the mean time, the real-time holographic interferometry was used to measure the thickness of anodized (oxide) film of the aluminium samples in solutions. Consequently, holographic interferometry is found very useful for surface finish industries especially for monitoring the early stage of anodization processes of metals, in which the thickness of the anodized film of the aluminium samples can be determined without any physical contact. In addition, measurements of electrochemical values such as the alternating current (A.C) impedance(Z), the double layer capacitance($C_{dl}$), and the polarization resistance(Rp) of anodized films of aluminium samples in boric acid solutions were made by the electrochemical impedance spectroscopy(EIS). Attempts to measure electrochemical values of Z, Cdl, and Rp were not possible by holographic interferometry in boric acid especially in low concentrations of the acid. This is because of the high rate of evolutions of interferometric fringes during the anodization process of the aluminium samples in boric acid, which made measurements of Z, Cdl, and Rp are difficult.

Electrochemical Impedance Spectroscopy and Cyclic Voltammetry Methods for Monitoring SmCl3 Concentration in Molten Eutectic LiCl-KCl

  • Shaltry, Michael R.;Allahar, Kerry N.;Butt, Darryl P.;Simpson, Michael F.;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • Molten salt solutions consisting of eutectic LiCl-KCl and concentrations of samarium chloride (0.5 to 3.0 wt%) at 500℃ were analyzed using both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The CV technique gave the average diffusion coefficient for Sm3+ over the concentration range. Equipped with Sm3+ diffusion coefficient, the Randles-Sevcik equation predicted Sm3+ concentration values that agree with the given experimental values. From CV measurements; the anodic, cathodic, and half-peak potentials were identified and subsequently used as a parameter to acquire EIS spectra. A six-element Voigt model was used to model the EIS data in terms of resistance-time constant pairs. The lowest resistances were observed at the half-peak potential with the associated resistance-time constant pairs characterizing the reversible reaction between Sm3+ and Sm2+. By extrapolation, the Voigt model estimated the polarization resistance and established a polarization resistance-concentration relationship.

A study on the characterization of electrode at graphite materials by impedance spectroscopy (임피던스를 이용한 흑연재료의 전극특성에 관한 연구)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.571-583
    • /
    • 1996
  • The electrochemical behavior on electrographite and graphite foil electrode with porous surface in 0.5 M $K_{2}SO_{4}$ solution with 1 mM $[Fe(CN)_{6}]^{3-}/[Fe(CN)_{6}]^{4-}$ have been characterized by impedance spectroscopy. In cyclic voltammograms, relative high current according to structure of porous surface for graphite materials was represented, and indicated hgih double layer capacitance on graphite foil. The faraday-impedance and the change of impedance spectrum on both graphite materials were not remarkable during polarization by reaction of field transport. Chemical adsorption was represented on electrographite and was depended highly at anodic polarization.

  • PDF

Blood Glucose Measurement Principles of Non-invasive Blood Glucose Meter: Focused on the Detection Methods of Blood Glucose (무채혈 혈당 측정기의 혈당 측정 원리: 혈당 검출방법 중심으로)

  • Ahn, Wonsik;Kim, Jin-Tae
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.114-127
    • /
    • 2012
  • Recent technical advancement allows noninvasive measurement of blood glucose. In this literature, we reviewed various noninvasive techniques for measuring glucose concentration. Optical or electrical methods have been investigated. Optical techniques include near-infrared spectroscopy, Raman spectroscopy, optical coherence technique, polarization, fluorescence, occlusion spectroscopy, and photoacoustic spectroscopy. Electrical methods include reverse iontophoresis, impedance spectroscopy, and electromagnetic sensing. Ultrasound, detection from breath, or fluid harvesting technique can be used to measure blood glucose level. Combination of various methods is also promising. Although there are many interesting and promising technologies and devices, there need further researches until a commercially available non-invasive glucometer is popular.

Crevice Corrosion Evaluation of Cold Sprayed Copper (저온분사코팅구리의 틈새부식 특성 평가)

  • Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.247-260
    • /
    • 2010
  • The developement of a HLW disposal canister is under way in KAERI using Cold Spray Coating technique. To estimate corrosion behavior of a cold sprayed copper, a creivice corrosion test was conducted at Southwest Research Institute(SWRI) in the United State. For the measurement of repassivation potential needed for crevice corrosion, three methods such as (1) ASTM G61-86 : Cyclic Potentiodynamic Polarization Measurements, (2) Potentiodynamic Polarization plus intermediate Potentiostatic Hold method, and (3) ASTM G192-08 (THE method) : Potentiodynamic- Galvanostatic-Potentiostatic Method, were introduced in this report. In the crevice corrosion test, the occurrence of corrosion at crevice area was optically determined and the repassivation potentials were checked for three kind of copper specimens in a simulated KURT underground water, using a crevice former dictated in ASTM G61-86. The applied electrochemical test techniques were cyclic polarization, potentiostatic polarization, and electrochemical impedance spectroscopy. As a result of crevice corrosion tests, every copper specimens including cold sprayed one did not show any corrosion figure on crevice areas. And the open-cell voltage, at which corrosion reaction initiates, was influenced by the purity of copper, but not their manufacturing method in this experiment. Therefore, it was convinced that there is no crevice corrosion for the cold sprayed copper in KURT underground environment.

Measurement of Stokes parameter changes due to blood glucose using PS-LCI (PS-LCI를 이용한 혈당 농도에 따른 Stokes 파라미터 측정)

  • 이상원;김법민
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.258-259
    • /
    • 2003
  • 최근 수년간 polarimetry, Raman spectroscopy, near infrared (NIR) absorption spectroscopy, NIR scattering, optoacoustics 등의 방법을 통하여 비침습적으로 Glucose의 농도를 측정하려는 연구가 많이 시도되었다. 일반적으로 이들 방법은 sensitivity 와 signal-to-noise ratio가 매우 낮고 복잡한 알고리즘이 요구되어져 glucose 농도 측정에 한계가 있음이 드러났다. 본 연구에서는 polarization sensitive low coherence interferometer (PS-LCI) 기법을 이용하여 농도에 따른 stokes parameters를 측정함으로써 비침습적으로 glucose를 측정하는 것이 가능한지 알아보는데 그 목적이 있다. (중략)

  • PDF

A Study on Corrosion Resistance Characteristics of PVD Cr-N Coated Steels by Electrochemical Method

  • Ahn, SeungHo;Yoo, JiHong;Choi, YoonSeok;Kim, JungGu;Han, JeonGun
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.289-295
    • /
    • 2003
  • The corrosion behavior of Cr-N coated steels with different phases (${\alpha}-Cr$, CrN and $Cr_2N$) deposited by cathodic arc deposition on Hl3 steel was investigated in 3.5% NaCl solution at ambient temperature. Potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were the techniques applied to characterize the corrosion behavior. It was found that the CrN coating had a lower current density from potentiodynamic polarization test than others. The porosity, corresponding to the ratio of the polarization resistance of the uncoated and the coated substrate, was higher in the $Cr_2N$ coating than in the other Cr-N coated steels. EIS measurements showed, for the most of Cr-N coated steels, that the Bode plot presented two time constants. Also, the $Cr_2N$ coating represents the characteristic of Warburg behavior after 72hr of immersion. The coating morphologies were examined in planar view and cross-section by SEM analyses and the results were compared with those of the electrochemical measurement. The CrN coating had a dense, columnar grain-sized microstructure with minor intergranular porosity. From the above results, the CrN coating provided a better corrosion protection than the other Cr-N coated steels.

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment

  • Raza, Syed Abbas;Karim, Muhammad Ramzan Abdul;Shehbaz, Tauheed;Taimoor, Aqeel Ahmad;Ali, Rashid;Khan, Muhammad Imran
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.213-226
    • /
    • 2022
  • In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.

Investigation of Sweet and Sour Corrosion of Mild Steel in Oilfield Environment by Polarization, Impedance, XRD and SEM Studies

  • Paul, Subir;Kundu, Bikramjit
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.249-256
    • /
    • 2018
  • Metallic structures in the oil and gas production undergo severe degradation due to sweet and sour corrosion caused by the presence of $CO_2$ and $H_2S$ in the fluid environment. The corrosion behavior of 304 austenitic stainless was investigated in the presence of varying concentrations of $CO_2$ or $H_2S$ and $CO_2+H_2S$ to understand the effect of the parameters either individually or in combination. Potentiodynamic polarization study revealed that a small amount of $CO_2$ aided in the formation of calcareous deposit of protective layer on passive film of 304 steel, while increase in $CO_2$ concentration ruptured the layer resulting in sweet corrosion. The presence of $S^{2-}$ damaged the passive and protective layer of the steel and higher levels increased the degradation rate. Electrochemical impedance studies revealed lower polarization resistance and impedance at higher concentration of $CO_2$ or $H_2S$, supporting the outcomes of polarization study. XRD analysis revealed different types of iron carbides and iron sulphides corresponding to sweet and sour corrosion as the corrosion products, respectively. SEM analysis revealed the presence of uniform, localized and sulphide cracking in sour corrosion and general corrosion with protective carbide layer amid for sweet corrosion.