• Title/Summary/Keyword: Polarization insensitive

Search Result 31, Processing Time 0.027 seconds

Characterization of a Tunable Flattened-Pass-band Fiber Comb Filter

  • Lee, Yong Wook;Jung, Jaehoon
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • The optical characteristics of a tunable flattened-pass-band fiber comb filter, based on the polarization-diversified loop configuration, are investigated using the $Poincar{\acute{e}}$-sphere representation. In the design process, the spectral flatness is checked quantitatively, and the tunability of the pass band is demonstrated experimentally. Theoretical calculations show that the filter also exhibits desirable dispersion and polarization properties. The orientation angles of rotatable wave plates for the wavelength tunability of the filter are obtained. Furthermore, we elaborate on the multiple angle loci produced by degeneracies through the combination of optical elements within the loop of the filter.

Novel Long-period Fiber Grating devices for Monitoring the Deformation of Ship Hull (선체의 변형을 감지하기 위한 새로운 형태의 장주기 광섬유 격자 소자)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.761-767
    • /
    • 2007
  • We have developed novel optical-fiber sensors based on strain-induced long-period fiber gratings for monitoring the deformation of a hull. They have no external pressure for sustaining the mechanical formed gratings. The pressure, which provides a force to form the periodic grating along the single mode fiber, was realized by the bonding strength of a photopolymer. To reduce the polarization dependency of the sensors caused by the asymmetry structure of gratings, a Faraday Rotator Mirror (FRM) was utilized in this experiment. We have realized the polarization-insensitive function of the proposed sensors. The change of an external strain are measured by an optical spectrum analyzer. When the external stain increases. the attenuation at the resonant wavelength decreases and the loss peak was slightly shifted to the shorter wavelength.

Tunneling Magnetoresistance: Physics and Applications for Magnetic Random Access Memory

  • Park, Stuart in;M. Samant;D. Monsma;L. Thomas;P. Rice;R. Scheuerlein;D. Abraham;S. Brown;J. Bucchigano
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.5-32
    • /
    • 2000
  • MRAM, High performance MRAM using MTJS demostrated, fully integrated MTJ MRAM with CMOS circuits, write time ~2.3 nsec; read time ~3 nsec, Thermally stable up to ~350 C, Switching field distibution controlled by size & shape. Magnetic Tunnel Junction Properties, Magnetoresistance: ~50% at room temperature, enhanced by thermal treatment, Negative and Positive MR by interface modification, Spin Polarization: >55% at 0.25K, Insensitive ot FM composition, Resistance $\times$ Area product, ranging from ~20 to 10$^{9}$ $\Omega$(${\mu}{\textrm}{m}$)$^{2}$, Spin valve transistor, Tunnel injected spin polarization for "hot" electrons, Decrease of MTJMR at high bias originates from anode.

  • PDF

Application of Transformation Electromagnetics to Cloak Design and Reduction of Radar Cross Section

  • Mittra, Raj;Zhou, Yuda
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • In this paper we present an alternative approach to addressing the problem of designing cloaks for radar targets, which have been dealt with in the past by using the transformation optics (TO) algorithm. The present design utilizes realistic materials, which can be fabricated in the laboratory, and are wideband as well as relatively insensitive to polarization and incident angle of the incoming wave. The design strategy, presented herein, circumvents the need to use metamaterials for cloak designs that are inherently narrowband, dispersive and highly sensitive to polarization and incident angle. A new interpretation of the TO algorithm is presented and is employed for the design of radar cross section-reducing absorbers for arbitrary targets, and not just for canonical shapes, e.g., cylinders. The topic of performance enhancement of the absorbers by using graphene materials and embedded frequency structure surfaces is briefly mentioned. The design procedure for planar absorbing covers is presented and their performance as wrappers of general objects is discussed. A number of test cases are included as examples to illustrate the application of the proposed design methodology, which is a modification of the classical TO paradigm.

Polarization-Maintaining Photonic-Crystal-Fiber-based Polarimetric Strain Sensor with a Short Sensing Head (짧은 센서부를 가진 편광유지 광자결정 광섬유 기반 편광 간섭형 스트레인 센서)

  • Noh, Tae Kyu;Lee, Yong Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.3
    • /
    • pp.131-136
    • /
    • 2014
  • In this paper we have implemented a temperature-insensitive polarimetric fiber strain sensor based on a Sagnac birefringence interferometer composed of a short polarization-maintaining photonic crystal fiber (PM-PCF), a 3-dB fiber coupler, and polarization controllers. The PM-PCF used as a sensor head was 2 cm long, which is the shortest length for a sensing element compared to other polarimetric fiber strain sensors using a PM-PCF. The proposed sensor showed a strain sensitivity of ${\sim}0.87pm/{\mu}{\varepsilon}$ with a strain measurement range from 0 to $8m{\varepsilon}$. The temperature sensitivity was also investigated and measured as approximately $-12pm/^{\circ}C$, when ambient temperature changed from 30 to $100^{\circ}C$. This temperature sensitivity is about 82 times smaller than that of conventional polarization-maintaining fiber (approximately $-990pm/^{\circ}C$). In particular, from a practical perspective we have experimentally and theoretically confirmed that the wavelength selected for the indicator dip location does not make a significant difference in the strain sensitivity.

A Study on the Structure of Polarization Independent GaInAs/GaInAsP/InP Semiconductor Optical Amplifier (편광 비의존성 GaInAs/GaInAsP/InP 반도체 광 증폭기 구조에 관한 연구)

  • Park, Yoon-Ho;Kang, Byung-Kwon;Lee, Seok;Cho, Yong-Sang;Kim, Jeong-Ho;Hwang, Sang-Ku;Hong, Tchang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.681-686
    • /
    • 1999
  • In this study, the gain characteristics of the strained structures for SOA were calculated numerically and the optimized strained quantum well for the polarization-insensitive SOA was obtained. The structures used in this calculation were consisted of one, two, and three GaAs Delta layers respectively in the GaInAs(160 $\AA$) well. Moreover the third one was calculated by changing from one mono-layer to three mono-layers in the thichless of GaAs delta layers. This structure enhances the TM mode gain coefficient with good efficiency because the light-hole band is lifted up whereas the heavy-hole band is lowered down. Additionally, The structure of the 3 GaAs delta layers(1 mono layer thickness) shows 3dB gain bandwidth of 85nm in 1.55um wavelength system. This study is expected to be used in making a wide band and polarization-independent semiconductor optical amplifier practically.

  • PDF

Effects of Reagent Rotation on Stereodynamics Information of the Reaction O(1D)+H2 (v = 0, j = 0-5) → OH+H: A Theoretical Study

  • Kuang, Da;Chen, Tianyun;Zhang, Weiping;Zhao, Ningjiu;Wang, Dongjun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2841-2848
    • /
    • 2010
  • Quasiclassical trajectory (QCT) method has been used to investigate stereodynamics information of the reaction $O(^1D)+H_2{\rightarrow}\;OH$+H on the DK (Dobbyn and Knowles) potential energy surface (PES) at a collision energy of 23.06 kcal/mol, with the initial quantum state of reactant $H_2$ being set for v = 0 (vibration quantum number) and j = 0-5 (rotation quantum number). The PDDCSs (polarization dependent differential cross sections) and the distributions of P($\theta_r$), P($\phi_r$), P($\theta_r$, $\phi_r$) have been presented in this work. The results demonstrate that the products are both forward and backward scattered. As j increases, the backward scattering becomes weaker while the forward scattering becomes slightly stronger. The distribution of P($\theta_r$) indicates that the product rotational angular momentum j' tends to align along the direction perpendicular to the reagent relative velocity vector k, but this kind of product alignment is found to be rather insensitive to j. Furthermore, the distribution of P($\phi_r$) indicates that the rotational angular momentum vector of the OH product is preferentially oriented along the positive direction of y-axis, and such product orientation becomes stronger with increasing j.

The Effects of Grain Size on the Degradation Phenomena of PZT Ceramics (입자의 크기가 PZT 세라믹스의 열화현상에 미치는 영향)

  • 정우환;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 1992
  • The effect of grain size on the time-dependent piezoelectrice degradation of a poled PZT of MPB composition Pb0.988Sr0.012 (Zr0.52Ti0.48)O3 with 2.4 mol% of Nb2O5 was studied, and the degradation mechanism was discussed. Changes in the internal bias field and the internal stress both responsible for the time-dependent degradation of poled PZT were examined by the polarization reveral technique, XRD and Vickers indentation, respectively. The piezoelectric degradation increased with increasing time and grain size, and the internal bias field due to space charge diffusion decreased with increasing grain size of poled PZT. The internal bias field, however, was almost insensitive to the degradation time regardless of the grain size. On the other hand, both the x-ray diffraction peak intensity ratio of (002) to (200) and the fracture behavior including the crack propagation support that the ferroelectric domain rearrangement of larger grain size showed rapid relaxation of the internal stress compared with smaller one, which is thought the origin of the larger piezoelectric degradation in the former. In conclusion, the contribution of space charge diffusion on the piezoelectric degradation of PZT is strongly dependent on both the grain size and the composition. Thus, the relaxation of internal stress due to the ferroelectric domain rearrangement as well as the amount and time-dependence of the internal bias field due to space charge diffusion should be considered simultaneously in the degradation mechanism of PZT.

  • PDF

Calculation of $^{13}C, ^{15}N,\; and \;^{29}Si$ NMR Shielding Tensors for Selected X-Substituted Silatranes Using GIAO/CSGT-SCF

  • 김동희;이미정;오세웅
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.847-851
    • /
    • 1998
  • 13C, 15N, and 29Si NMR chemical shifts have been computed for selected X-substituted silatranes (X=Cl, F, H, CH3) using Gauge-Including Atomic Orbitals (GIAO) and Continuous Set of Gauge Transformations (CSGT) at the Hartree-Fock level of theory. The isotropic 13C chemical shifts are largely insensitive to substituent-induced structural changes. In this study, the isotropic 13C chemical shifts GIAO and CSGT calculations at the HF/6-31G and HF/6-31G* levels are sufficiently accurate to aid in experimental peak assignments. The isotropic 13C chemical shifts X-substituted silatranes at HF/6-31G* level are approximately 4 ppm different from the experimental values. In contrast, the isotropic 15N and 29Si chemical shifts and the chemical shielding tensors are quite sensitive to substituent-induced structural changes. These trends are consistent with those of the experiment. The 15N chemical shift parameters demonstrate a very clear correlation with Si-N distance, especially when we use the polarization function. Changes in anisotropy, 3a as well as in the 15N isotropic chemical shifts are due primarily to changes in the value of a.. But in case of "Si the correlations are not as clean as for the 15N chemical shift.