• Title/Summary/Keyword: Polarization Direction

Search Result 261, Processing Time 0.029 seconds

Improved Rainfall Estimation Based on Corrected Radar Reflectivity in Partial Beam Blockage Area of S-band Dual-Polarization Radar (S밴드 이중편파레이더의 부분 빔 차폐영역 내 반사도 보정을 통한 지상강우추정 개선)

  • Lee, Jeong-Eun;Jung, Sung-Hwa;Kim, Hae-Lim;Lee, Sun-Ki
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.467-481
    • /
    • 2017
  • A correction method of reflectivity in partial beam blockage (PBB) area is suggested, which is based on the combination of digital terrain information and self-consistency principle between polarimetric observation. First, the reflectivity was corrected by adding the radar energy loss estimated from beam blockage simulation using digital elevation model (DEM) and beam propagation geometry in standard atmosphere. The additional energy loss by unexpected obstacles and non-standard beam propagation was estimated by using the coefficient between accumulated reflectivity ($Z_H$) and differences of differential phase shift (${\Phi}_{DP}$) along radial direction. The proposed method was applied to operational S-band dual-polarization radar at Jindo and its performance was compared with those of simulation method and self-consistency method for six rainfall cases. When the accumulated reflectivity and increment of ${\Phi}_{DP}$ along radial direction are too small, the self-consistency method has failed to correct the reflectivity while the combined method has corrected the reflectivity bias reasonably. The correction based on beam simulation showed the underestimation. For evaluation of rainfall estimation, the FBs (FRMSEs) of simulation method and self-consistency principle were -0.32 (0.59) and -0.30 (0.57), respectively. The proposed method showed the lowest FB (-0.24) and FRMSE (0.50). The FB and FMSE were improved by about 18% and by 19% in comparison to those before correction (-0.42 and 0.70). We can conclude that the proposed method can improve the accuracy of rainfall estimation in PBB area.

Transverse Wave Propagation in [ab0] Direction of Silicon Single Crystal

  • Yun, Sangjin;Kim, Hye-Jeong;Kwon, Seho;Kim, Young H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.381-388
    • /
    • 2015
  • The speed and oscillation directions of elastic waves propagating in the [ab0] direction of a silicon single crystal were obtained by solving Christoffel's equation. It was found that the quasi waves propagate in the off-principal axis, and hence, the directions of the phase and group velocities are not the same. The maximum deviation of the two directions was $7.2^{\circ}$. Two modes of the pure transverse waves propagate in the [110] direction with different speeds, and hence, two peaks were observed in the pulse echo signal. The amplitude ratio of the two peaks was dependent on the initial oscillating direction of the incident wave. The pure and quasi-transverse waves propagate in the [210] direction, and the oscillation directions of these waves are perpendicular to each other. The skewing angle of the quasi wave was calculated as $7.14^{\circ}$, and it was measured as $9.76^{\circ}$. The amplitude decomposition in the [210] direction was similar to that in the [110] direction, since the oscillation directions of these waves are perpendicular to each other. These results offer useful information in measuring the crystal orientation of the silicon single crystal.

An Electrochemical Evaluation on the Corrosion Resistance of a Al Alloy (주조용 Al합금의 내식성에 관한 전기화학적 평가)

  • Youn Dae-Hyun;Lee Myung-Hoon;Kim Ki-Joon;Moon Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.495-501
    • /
    • 2005
  • Al is a active metal that owes its resistance to a thin, protective, barrier oxide surface layer, which is stable in air and neutral aqueous solution. Thus Al alloys are widely used in architectural trim. cold & hot-water storage vessels and piping. However Al and most of its alloy may corrode with some forms such as pitting corrosion, intergranular corrosion and galvanic corrosion in the case of exposure to various industrial and marine atmosphere. Therefore a correct evaluation of corrosion resistance for their Al and Al alloys may be more important in a economical point of view. In this study. a relative evaluation of corrosion resistance for three kinds of Al alloys such as ALDC2, ALDC3, and ALDC8 series was carried out with electrochemical method. There is a tendency that corrosion potential is shifted to positive or negative direction by alloying components regardless of corrosion resistance. Moreover the data of corrosion properties obtained from cathodic Polarization curve, cyclic voltammogram and AC. DC impedance respectively showed a good correspondence each other against the corrosion resistance but variation of corrosion potential. passivity current density of anodic polarization curve and corrosion current density by Tafel extrapolation and Stern-Geary method didn't correspond with not only each other but also considerably the data of corrosion properties discussed above. Therefore it is suggested that an optimum electrochemical evaluation for corrosion resistance of Al alloy is to calculate the diffusion limiting current density of cathodic polarization curve, impedance of AC or DC and polarization resistance of cyclic voltammogram.

Corrosion Characteristics of Reinforced Steel Bar Emedded in Multiple Mortar Specimen(W/C:0.5) Aged 5 Years in Seawater

  • Moon, Kyung-Man;Takeo, Oki;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • Reinforced concrete structures have been increasingly widely used in numerous industrial fields. These structures are often exposed to severely corrosive environments such as seawater, contaminated water, acid rain, and the seashore. Thus, the corrosion problems that occur with the steel bars embedded in concrete are very important from the safety and economic points of view. In this study, the effects of the cover thickness on the corrosion properties of reinforced steel bars embedded in multiple mortar test specimens immersed in seawater for 5 years were investigated using electrochemical methods such as the corrosion potentials, polarization curves, cyclic voltammograms, galvanostat, and potentiostat. The corrosion potentials shifted in the noble direction, and the value of the AC impedance also exhibited a higher value with increasing cover thickness. Furthermore, the polarization resistance increased with increasing cover thickness, which means that the oxide film that is deposited on the surface of a steel bar surrounded by alkali environment exhibits better corrosion resistance because the water, chloride ions and dissolved oxygen have difficulty penerating to the surface of the steel bar with increasing cover thickness. Consequently, it is considered that the corrosion resistance of reinforced steel can be improved by increasing the cover thickness. However, the corrosion resistance values of a steel bar estimated by measuring the corrosion potential, impedance and polarization resistance were not in good agreement with its corrosion resistance obtained by polarization curves.

POLARIZATION OF THOMSON SCATTERED LINE RADIATION FROM BROAD ABSORPTION LINE OUTFLOWS IN QUASARS

  • Baek, Kyoung-Min;Bang, Jeong-Hoon;Jeon, Yeon-Kyeong;Kang, Suna;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • About 10 percent of quasars are known to exhibit deep broad absorption troughs blueward of prominent permitted emission lines, which are usually attributed to the existence of outflows slightly above he accretion disk around the supermassive black hole. Typical widths up to 0.2c of these absorption roughs indicate the velocity scales in which special relativistic effects may not be negligible. Under he assumption of the ubiquity of the broad absorption line region in quasars, the broad emission line flux will exhibit Thomson scattered components from these fast outflows. In this paper, we provide our Monte Carlo calculation of linear polarization of singly Thomson scattered line radiation with the careful considerations of special relativistic effects. The scattering region is approximated by a collection of rings that are moving outward with speeds ${\upsilon}=c{\beta}<0.2c$ near the equatorial plane, and the scattered line photons are collected according to its direction and wavelength in the observer's rest frame. We find that the significantly extended red tail appears in the scattered radiation. We also find that the linear degree of polarization of singly Thomson scattered line radiation is wavelength-dependent and hat there are significant differences in the linear degree of polarization from that computed from classical physics in the far red tail. We propose that the semi-forbidden broad emission line C III]1909 may be significantly contributed from Thomson scattering because this line has small resonance scattering optical depth in the broad absorption line region, which leads to distinct and significant polarized flux in this broad emission line.

Structural characterization of nonpolar GaN using high-resolution transmission electron microscopy (HRTEM을 이용한 비극성 GaN의 구조적 특성 분석)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Kim, Young-Yi;Ahn, Cheol-Hyoun;Han, Won-Suk;Choi, Mi-Kyung;Bae, Young-Sook;Woo, Chang-Ho;Cho, Hyung-Koun;Moon, Jin-Young;Lee, Ho-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.23-23
    • /
    • 2009
  • GaN-based nitride semiconductors have attracted considerable attention in high-brightness light-emitting-diodes (LEDs) and laser diodes (LDs) covering from green to ultraviolet spectral range. LED and LD heterostructures are usually grown on (0001)-$Al_2O_3$. The large lattice mismatch between $Al_2O_3$ substrates and the GaN layers leads to a high density of defects(dislocations and stacking faults). Moreover, Ga and N atoms are arranged along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs heterostructures, stress applied along the same axis can also give rise to piezoelectric polarization. The total polarization, which is the sum of spontaneous and piezoelectric polarizations, is aligned along the [0001] direction of the wurtzite heterostructures. The change in the total polarization across the heterolayers results in high interface charge densities and spatial separation of the electron and hole wave functions, redshifting the photoluminescence peak and decreasing the peak intensity. The effect of polarization charges in the GaN-based heterostructures can be eliminated by growing along the non-polar [$11\bar{2}0$] (a-axis) or [$1\bar{1}00$] (m-axis) orientation instead of thecommonly used polar [0001] (c-axis). For non-polar GaN growth on non-polar substrates, the GaN films have high density of planar defects (basal stacking fault BSFs, prismatic stacking fault PSFs), because the SFs are formed on the basal plane (c-plane) due to their low formation energy. A significant reduction in defect density was recently achieved by applying blocking layer such as SiN, AlN, and AlGaN in non-polar GaN. In this work, we were performed systematic studies of the defects in the nonpolar GaN by conventional and high-resolution transmission electron microscopy.

  • PDF

Optical Emission Anisotropy in InP Aligned Quantum Dots

  • Shin, Y.H.;Kim, Yongmin;Song, J.D.;Choi, Subong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.288.2-288.2
    • /
    • 2014
  • InP quantum dots were grown by using the molecular beam epitaxy technique. Quantum dots are connected and composed string-like one-dimensional structure due to the strain field along [110] crystal direction. Two prominent photoluminescence transitions from normal quantum dots and string-like one-dimensional structure were observed which show strong optical anisotropy along [1-10] and [110] crystal directions. Both peaks also showed blue-shift while rotating emission polarization from [1-10] to [110] direction. Such optical transition behaviors are the consequence of the valence band mixing caused by strain field along the [110] crystal direction.

  • PDF

Study on the Surface Magnetic Domain Structure of Thin-Gauged 3% Si-Fe Strips using Scanning Electron Microscopy with Polarization Analysis

  • Chai, K.H.;Heo, N.-H.;Na, J.g.;Lee, S.R.;Woo, j.s.
    • Journal of Magnetics
    • /
    • v.3 no.2
    • /
    • pp.44-48
    • /
    • 1998
  • Scanning Electron Microscopy with Polarization Analysis (SEMPA) was used to image the surface magnetic domain structure of the 100 ${\mu}{\textrm}{m}$ thick 3% Si-Fe sheet. The thin-gauged 3% Si-Fe strips with magnetic induction ($B_{10}$) from 1.98 to 1.57 Tesla were prepared via conventional metallurgical processes including melting, hot-and cold-rolling, intermediate annealing and final annealing. Using SEMPA, it was observed that the $B_{10}$ (1.98 T) Tesla sample was almost composed of 180$^{\circ}$ stripe domains which are parallel to rolling direction. On the other hand the 3% Si-Fe sheet with $B_{10}$ (1.57 T) Tesla was composed of large 180$^{\circ}$stripe domains that are slanted about 30$^{\circ}$to the rolling direction and complex magnetic domain structures like tree and zigzag pattern. The 180$^{\circ}$stripe domains, which covered a major part of the sample, had (110)<001> Goss texture parallel to the rolling direction. The domain walls between 180$^{\circ}$stripe domains were the conventional Bloch type walls. On the other hand, the 90$^{\circ}$domains, which covered minor part on edge of the sample, were observed in (200) grains. The domain walls between 90$^{\circ}$domains were the Neel type walls. In high magnification, the elliptical singularity at the Neel walls was clearly observed.

  • PDF

A study on analysis of particle swarm optimization algorithm for the optimum design of rectenna for wireless power transmission (무선전력전송용 렉테나 최적 설계를 위한 PSO 알고리즘 분석 연구)

  • Kim, Koon-Tae;Nam, Yeong-Bin;Oh, Seung-Hun;Lee, Jung-Hyeok;Kang, Seong-In;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.2
    • /
    • pp.34-38
    • /
    • 2012
  • In this paper, the particle swarm optimization (PSO) algorithm is adopted to design a modified ring-slot type patch rectenna with a resonance frequency of 2.45GHz. In order to accomplish minimization of dimensions and circular polarization (CP) and harmonic suppression, axial direction slits and side-cuts are added to the patch of the ring. The PSO manipulated this kind of multi-dimensional problem very well, and as a result, the designed rectenna shows a desirable performance of return loss of 21.36dB and axial ratio of 2.92dB at the frequency of 2.45GHz with compact sizing.

  • PDF

Design and Fabrication of Right Hand Circular Polarization Microstrip Patch Array Antenna for Ka Band with Mono-Pulse Feed (모노펄스 급전 구조를 갖는 Ka 대역 우회선 원편파 마이크로스트립 패치 배열 안테나 설계 및 제작)

  • Bae, Ki-Hyoung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.297-302
    • /
    • 2005
  • Right hand circularly polarized Ka band microstrip patch array antenna was designed, manufacture and measurement were carried out. In order to lower axial ratio performance sequential rotation array technique was used. With mono-pulse feed There are sum and delta channel. Waveguide to microstrip transition was used. The 512 array antenna was performed which axial ratio is about 1.ldB in the half power beam width and also 1.ldB at the normal direction. Directivity gain of designed antenna is 32dB.

  • PDF