• 제목/요약/키워드: Polar mean

검색결과 282건 처리시간 0.016초

다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법 (Physical Offset of UAVs Calibration Method for Multi-sensor Fusion)

  • 김철욱;임평채;지준화;김태정;이수암
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1125-1139
    • /
    • 2022
  • 무인항공기에 부착된 위성 항법 시스템/관성 측정 센서(global positioning system/inertial measurement unit, GPS/IMU)와 관측 센서 사이에는 물리적인 위치와 자세 오차가 존재한다. 해당 물리 오프셋으로 인해, 관측 데이터는 비행 방향에 따라 서로 위치가 어긋나는 이격 오차가 발생한다. 특히나, 다중 센서를 활용하여 데이터를 취득하는 다중 센서 무인항공기의 경우, 관측 센서가 변경될 때마다 고액의 비용을 지불하고 외산 소프트웨어 의존하여 물리 오프셋을 조정하고 있는 실정이다. 본 연구에서는 다중 센서에 적용 가능한 초기 센서 모델식을 수립하고 물리 오프셋 추정 방법을 제안한다. 제안된 방안은 크게 3가지 단계로 구성된다. 먼저, 직접지리 참조를 위한 회전 행렬 정의 및 초기 센서 모델식을 수립한다. 다음으로, 지상기준점과 관측 센서에서 취득된 데이터 간의 대응점을 추출하여 물리 오프셋 추정을 위한 관측방정식을 수립한다. 마지막으로, 관측 자료를 기반으로 물리 오프셋을 추정하고, 추정된 파라미터를 초기 센서 모델식에 적용한다. 전주, 인천, 알래스카, 노르웨이 지역에서 취득된 데이터셋에 적용한 결과, 4개 지역 모두 물리 오프셋 적용 전에 발생되던 영상 접합부의 이격 오차가 물리 오프셋을 적용 후 제거되는 것을 확인했다. 인천 지역의 지상기준점 대비 절대 위치 정확도를 분석한 결과, 초분광 영상의 경우, X, Y 방향으로 약 0.12 m 위치 편차를 보였으며, 라이다 포인트 클라우드의 경우 약 0.03 m의 위치 편차를 보여줬다. 더 나아가 영상 내 특징점에 대하여 초분광, 라이다 데이터의 상대 위치 정확도를 분석한 결과, 센서 데이터 간의 위치 편차가 약 0.07 m인 것을 확인했다. 따라서, 제안된 물리 오프셋 추정 및 적용을 통해 별도 기준점 없이 정밀한 데이터 매핑이 가능한 직접 지리 참조가 가능하다는 것을 확인했으며, 다중 센서를 부착한 무인항공기에서 취득된 센서 데이터 간의 융합 가능성에 대해 확인하였다. 본 연구를 통해 독자적인 물리 파라미터 추정 기술 보유를 통한 경제적 비용 절감 효과 및 관측 조건에 따른 유연한 다중 센서 플랫폼 시스템 운용을 기대한다.

다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산 (Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence)

  • 정시훈;추민기;임정호;조동진
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.707-723
    • /
    • 2022
  • 위성기반 해수면온도는 광역 모니터링이 가능한 장점이 있지만, 다양한 환경적 그리고 기계적 이유로 인한 시공간적 자료공백이 발생한다. 자료공백으로 인한 활용성의 한계가 있으므로, 공백이 없는 자료 생산이 필수적이다. 따라서 본 연구에서는 한반도 주변 해역에 대해 극궤도와 정지궤도 위성에서 생산되는 해수면온도 자료를 두 단계의 기계학습을 통해 융합하여 4 km의 공간해상도를 가지는 일별 해수면온도 합성장을 만들었다. 첫번째 복원 단계에서는 Data INterpolate Convolutional AutoEncoder (DINCAE) 모델을 이용하여 다종 위성기반 해수면온도 자료를 합성하여 복원하였고, 두번째 보정 단계에서는 복원된 해수면온도 자료를 현장관측자료에 맞춰 Light Gradient Boosting Machine (LGBM) 모델로 학습시켜 최종적인 일별 해수면온도 합성장을 만들었다. 개발된 모델의 검증을 위해 복원 단계에서 무작위 50일의 자료 중 일부분을 제거하여 복원한 뒤 제거된 영역에 대해 검증하였으며, 보정 단계에서는 Leave One Year Out Cross Validation (LOYOCV) 기법을 이용하여 현장자료와의 정확도를 검증하였다. DINCAE 모델의 해수면온도 복원 결과는 상당히 높은 정확도(R2=0.98, bias=0.27℃, RMSE=0.97℃, MAE=0.73℃)를 보였다. 두번째 단계의 LGBM 보정 모델의 정확도 개선은 표층 뜰개 부이와 계류형 부이 현장자료와의 비교에서 모두 상당한 향상(RMSE=∆0.21-0.29℃, rRMSE=∆0.91-1.65%, MAE=∆0.17-0.24℃)을 보여주었다. 특히, 모든 현장 자료를 이용한 보정 모델의 표층 뜰개 부이와의 정확도는 동일한 현장 자료가 동화된 기존 해수면온도 합성장보다 나은 정확도를 보였다. 또한 LGBM 보정 모델은 랜덤포레스트(random forest)를 사용한 선행연구에서 보고된 과적합의 문제를 상당부분 해결하였다. 보정된 해수면온도는 기존의 초고해상도 해수면온도 합성장들과 유사한 수준으로 수온 전선과 와동 등의 중규모 해양현상을 뚜렷하게 모의하였다. 본 연구는 다종위성 자료와 기계학습 기법을 사용해 시공간적 공백 없는 고해상도 해수면온도 합성장 제작 방법을 제시하였다는 점에서 가치가 있다.