• 제목/요약/키워드: Polar Solvents

검색결과 205건 처리시간 0.023초

수분이 식품성분과 인쇄 용제와의 분배계수에 미치는 영향 (Effect of Water Content on Partitioning Behavior of Printing Ink Solvent on Food Ingredients Before and After Baking)

  • 안덕준;김연욱;박훈
    • 한국포장학회지
    • /
    • 제9권1호
    • /
    • pp.1-6
    • /
    • 2003
  • The partitioning behavior of five printing ink solvents was studied in various cookie ingredients before and after baking which had different water content and different structure. Solvents were ethyl acetate, hexane, isopropanol, methyl ethyl ketone, and toluene which represent different characteristic functional groups. Gas chromatography (G.C.) was used to measure partitioning values at $25^{\circ}C$ on each raw and baked cookie ingredients. Baking condition of cookie ingredients was $260^{\circ}C$ for 10 min. In cookie ingredients, decreases in water content generally affected Kp of polar solvents, but did not affect that of the non-polar solvents. However, as water content decreased in the cookie ingredient, the Kp of the non-polar and polar solvents showed mixed results.

  • PDF

활성탄관에 포집된 극성유기용제의 탈착효율에 관한 연구 (A Study on Desorption Efficiency for Polar Solvents Collected on Charcoal Tube)

  • 김경란;백남원
    • 한국산업보건학회지
    • /
    • 제5권1호
    • /
    • pp.104-118
    • /
    • 1995
  • This study was performed to evaluate factors affecting desorption of organic solvents collected on charcoal tube and to find out the optimum condition. Desorption efficiency for polar analytes was improved when several polar desorption solvents such as methanol, dimethylformamide(DMF), 2-(2-butoxyethoxy)ethanol were added to carbon disulfide($CS_2$). The best improvement was achieved when 10% dimethylformamide(DMF) in $CS_2$ was used as desorption solvent. During storage of polar analytes, recovery was greatly reduced. Especially, the recovery of cyclohexanone was decreased to 18.1 % after a month storage at $34^{\circ}C$. After two weeks storage, recovery of polar analytes was sharply decreased. Water adsorbed on charcoal interfered the recovery of polar analytes but didn't interfere that one of nonpolar solvent, toluene. When 10% DMF in $CS_2$ was used as desorption solvent, the effect of water on recovery was decreased, comparing with Desorption efficiency increased when analyte loading increased, and usage of 10% DMF in $CS_2$ decreased the loading effect. Increasing volume of desorption solvent was not effective to improve desorption efficiency of analytes when 10% DMF was used. Continuous shaking and sonication is not helpful to increase the desorption efficiency of analytes except cyclohexanone using 10% DMF. When silica gel used as adsorbent, methanol was better desorbent than dimethylsulfoxide. Analytes adsorbed on silica gel showed high recovery in low concentration and less affected by humidity. On the basis of this study, the following conclusions have been drawn. To improve the recovery of polar organic materials in air samples, it is necessary to analyze samples as soon as possible after they were collected. Otherwise, samples must be stored at low temperature. Using two components of desorption solvents, such as 10% DMF in $CS_2$, the effects of loading and humidity decreased for polar analytes such as methyl ethyl ketone and methyl isobutyl ketone. When work place has high humidity with low concentration of polar organic solvents, silica gel can be used as adsorbent, because it produces quantitative recovery for polar analytes at this condition. But it should be noted that high humidity makes breakthrough easy in silica gel samples.

  • PDF

GC를 이용한 극성용매의 분석방법 개발 연구 (Study on Development of Analytical Method for Polar Solvents by GC)

  • 오도석;김성화;이슬;황경철
    • 한국산업보건학회지
    • /
    • 제26권1호
    • /
    • pp.20-29
    • /
    • 2016
  • Objectives: The purpose of this study is to simplify and standardize analytical method of polar solvents(methanol, isopropanol, n-butanol, acetone, methylene chloride and MIBK) in the working environmental by GC. Because NIOSH methods are various and complicated. Methods: The method is using the same stationary phase(5% phenyl 95% dimethylpolysiloxane), absorbent(silica gel) and desorption solvent(DMSO) for above 6 solvents. For the 6 solvents desorption efficiency, calibration curve, and limit of detection were studied Results: As the results, 6 solvents{2 groups ; first group(methanol/isopropanol/butanol) and second group(acetone/methylene chloride/MIBK)} could be separated and quantified within 10 minutes. Desorption efficiency from silica gell of 6 solvents using dimethylsulfoxide(DMSO) was methanol 86.2%, isopropanol 103.2%, n-butanol 101.8%, acetone 98.2%, methylene chloride 103.9% and MIBK 106.2% in the range of 0.2, 0.5, 2.0 times of TWA, consequently, satisfied NIOSH estimation level(beyond 75%). Correlation coefficient(r)in the range of 0.2~2.0 times of TWA, was above 0.999 for 6 solvent. LOD(mg/DMSO ml) using calibration curve in the range of 0.2~2 times of TWA was methanol 0.11, isopropyl alcohol 0.20, n-butanol 0.03, acetone 0.50, methylene chloride 0.05, MIBK 0.04 respectably. Conclusions: This method can be used at the sampling and analytical method for polar solvents by GC. Also, will be able to be applied with NIOSH methods.

Solvatokinetic and Solvatochromic Behavior of Bis(indolinobenzospiropyranyl) Sulfide Derivatives in Various Solvents

  • Keum, Sam-Rok;Ku, Byung-Soo;Kim, Sang-Eun;Choi, Yoon-Ki;Kim, Sung-Hoon;Koh, Kwang-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권9호
    • /
    • pp.1361-1365
    • /
    • 2004
  • Solvatokinetic and solvatochromic behavior of bis(indolinobenzospiropyranyl) sulfide derivatives 1a-1c have been studied in various solvents. The marked negative solvatochromism is exhibited for 1a and 1b in the whole region of solvent polarity examined. Whereas, it is found only in the polar solvent region ($E_T$ > 37) for 1c. The sensitivity order to the solvent media (slope values) is 1a > 1b > 1c. The branched linear plot with a zero slope was shown for the most sterically-hindered compound 1c in the less polar-solvent region (($E_T$ < 37). The biphasic plot is indicative of dual mechanistic process, i.e., a transition state with increased zwitter-ionic character in more polar solvents and electrocyclic process with an isopolar transition state in less polar solvents.

Cationic Polymerization of Electron-Donor Monomers by 1,1,2,2-Tetracyanocyclopropylstyrene, A New Electron-Acceptor

  • Ju-Yeon Lee;Sung-Ok Cho;A. B. Padias;H. K. Hall, Jr.
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권3호
    • /
    • pp.271-273
    • /
    • 1991
  • Poly (N-vinylcarbazole) was obtained spontaneously by 1,1,2,2-tetracyanocyclopropylstyrene(1) in polar solvents such as dichloromethane and acetonitrile at room temperature. The polymerization reactions were faster in more polar solvent and were not proceeded in less polar solvents such as chloroform and diethyl ether. The formation of poly (N-vinylcarbazole) was explained by bond-forming initiation theory, in which the initiating species are zwitterionic tetramethylene intermediates.

Novel Pd Catalysts with β-Diketiminates for Homopolymerization of Functionalized Norbornene Derivatives in Water/Organic Mixed Solvents

  • Lee, Eung Jun;Won, Wook Kyoung;Lee, Byoungki;Kye, Youn Hee;Lee, Ik Mo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2720-2724
    • /
    • 2013
  • Polynorbornenes prepared by vinyl addition pathway are known to have some desirable characteristics for wider application but they have some critical drawbacks such as brittleness, poor solubility and adhesion. In order to improve these drawbacks, extensive research for the successful homo- and copolymerization of polar functionalized norbornene with olefin has been carried out. Even though considerable advance has been achieved in the polymerization of polar functionalized monomers, successful catalytic systems for the homopolymerization of polar functionalized norbornene are rare. In this study, a novel successful catalytic system for the polymerization of polar functionalized norborene is proposed. This system employs Pd ${\beta}$-diketiminate/borate cocatalyst in water/organic mixed solvents and it is unique due to introduction of water as a component of solvents. Polymers obtained in this study show high Mw with narrow PDI. Effects of several reaction parameters to the polymer activity and properties are investigated and optimal catalytic system are proposed.

식품 성분과 식품 포장용 인쇄 잉크 용매의 화학적 구조가 분배작용에 미치는 영향 (Effect of chemical and physical structure on partitioning behavior of representative printing ink solvents and various food ingredients)

  • 안덕준
    • 한국포장학회지
    • /
    • 제10권1호
    • /
    • pp.7-14
    • /
    • 2004
  • Migration behavior of selected solvents and food samples showed differences of the chemical structures and polarities, the food samples which have similar polar expresses more higher affinity than different polar degrees. Water which is polar has a highest partitioning coefficient values on polar isopropanol, and oil which is nonpolar has highest partitioning value on non-polar toluene. The increasing order of partitioning values was accord with increasing water contents in food samples. It is showed that the wheat flour with 13.2% moisture content has the highest partitioning coefficient values on the isopropanol with -OH. Kp value of sugar showed remarkable lower partitioning coefficient values than other food samples due to high degree crystallinity. This phenomenon can be predictable with ${\delta}$ values, because order of partitioning coefficient values which comes out through the experiment and the sequence of Hildebrand solubility parameter value difference between food sample and printing ink solvent correspond almost. This Hildebrand solubility parameter value can be easily applied to the food package industry because the effect of food-safety can be considered without passing through complicated steps by using this method.

  • PDF

Solid Phase Microextraction법을 이용한 식품포장재 중의 잔류용제 분석 (Analysis of Residual Solvents in Food Packaging Materials Using Solid Phase Microextraction Method)

  • 서택교;박상현;이윤수;김정한;권익부
    • 한국식품위생안전성학회지
    • /
    • 제14권1호
    • /
    • pp.76-83
    • /
    • 1999
  • Solid phase microextraction (SPME) was used for the determination of 6 standard solvents (methanol, isopropanol, methyl ethyl ketone, ethyl acetate, cyclohexane, toluene) in food packaging materials. SPME method is a solvent-free sample preparation technique in which a fused silica fiber coated with polymeric organic liquid is introduced into the headspace above the sample. SPME method using fiber coated polydimethylisiloxane (PDMS) was compared with static headspace (SHS) method used as a reference. It was found that the optimal adsorption condition using PDMS-SPME method was 2$0^{\circ}C$ for 15 minutes for the standard solvents. Detection limits, linearity, reproducibility and recovery of both SHS and PDMS-SPME methods have been determined using 6 standard solvents. Both methods were characterized by high reproducibility and good linearity. Using SHS methods, the mean recovery of the 6 standard solvents was ranged from 75.5% to 105.8% with a mean relative standard deviation (RSD) of 0.3% to 4.8%. With PDMS-SPME method, the mean recovery of the 6 standard solvents was ranged from 86.7% to 108.3% with a mean RSD of 0.4% to 2.5%. The detection limits of both methods were the same for toluene, cyclohexane and methyl ethyl ketone; those of PDMS-SPME method were higher than those of SHS method for methanol, isopropanol and ethyl acetate. PDMS-SPME fiber shoed excellent adsorption for non-polar solvents such as toluene, while it showed relatively low adsorption for polar solvents such as methanol.

  • PDF

활성탄관에 포집된 혼합 유기용제의 보조탈착용매 변화에 따른 탈착률 비교 (Desorption Efficiency of Various Cosolvents for Organic Solvent Mixtures Collected on Activated Charcoal Tube)

  • 김강윤;노인봉;김현욱
    • 한국산업보건학회지
    • /
    • 제6권2호
    • /
    • pp.209-221
    • /
    • 1996
  • The purpose of this study was to find a suitable cosolvent to $CS_2$ so that desorption efficiency can be improved for both polar and non-polar organic solvent mixtures collected on an activated charcoal tube. Cosolvents added to $CS_2$ include: DMF(N,N-dimethylformamide): $CS_2$ (v/v 1:99), DMF:$CS_2$(v/v 3:97), BC (butyl carbitol, 2-(2-butoxy ethoxy) ethanol):$CS_2$(v/v 1:99), and BC:$CS_2$(v/v 3:97)). The results obtained were as follows : 1. Comparing the desorption efficiency of $CS_2$ with those of $CS_2$ with 1, 3, 5 % DMF and 1, 3 % BC cosolvents for two different groups of charcoal tubes each containing 8 different polar and non-polar organic solvents with 3 different concentration levels, the desorption efficiencies of the cosolvent-added $CS_2$ increased significantly for all polar organic solvents regardless of concentration levels tested. For non-polar organic solvents, no noticeable improvement was detected except xylene and trichloroethylene. The desorption efficiency of xylene increased significantly while that of trichloroethylene increased significantly at the lowest concentration level tested. 2. Either 5 % DMF or 3 % BC was the most suitable cosolvent because the desorption efficiency for non-polar organic solvent mixtures was similar or slightly improved compared with that of $CS_2$, while those of for polar organic solvent mixtures were above 75 % except for cyclohexanone. 3. The smallest variations in desorption efficiency represented by the ratio calculated from the maximum to minimum desorption efficiency for all concentration levels tested were found when 3 % BC was used as a cosolvent. The above results indicate that the desorption efficiency of $CS_2$ particularly for polar organic solvent mixtures collected on a charcoal tube can be significantly improved by the use of cosolvents such as 5 % DMF or 3 % BC. A caution, however, is in order for selecting a cosolvent whenever the cosolvent itself is being used in the workplace or the impurities contained in the cosolvent may interfere with the analytical results. In addition, to improve desorption efficiencies for such organic solvents as cyclohexanone or ketones, it is recommended to use suitable collection and desorption media other than the traditional method of charcoal tube collection/$CS_2$ desorption.

  • PDF

이온성 액체로 도핑된 폴리아닐린의 합성 및 특성 (Synthesis and Characterization of Polyaniline doped with Ionic Liquid)

  • 홍장후;조규성
    • 공업화학
    • /
    • 제21권1호
    • /
    • pp.93-97
    • /
    • 2010
  • 친핵성 첨가반응에 의한 극성 용매(NMP, DMSO, DMF, m-cresol etc.)에 용해성을 갖는 이온성 액체(1,3-dimethylimidazolium methylsulfate, I-DMS)로 도핑된 폴리아닐린(PAN/I-DMS)을 합성하였다. 극성 용매 내에서 PAN/I-DMS의 용해도는 3~6 wt%/vol.을 나타내었고, PAN/I-DMS films의 전기전도도는 $10^{-2}{\sim}7S/cm$를 나타내었다. PAN/I-DMS는 HCl로 도핑된 폴리아닐린(PAN/HCl)과 dimethylsulfate (DMS)로 도핑된 폴리아닐린(PAN/DMS)에 비하여 $160^{\circ}C$에서 열적 안정성과 전기 전도성이 우수함을 볼 수 있었다. 극성 용매 내에서의 용해도와 전기 전도도 증가 현상을 극성 sulfonate group과 극성 용매간의 상호 작용으로 설명하였다.