• 제목/요약/키워드: Poisson mixture models

검색결과 13건 처리시간 0.018초

Time-Matching Poisson Multi-Bernoulli Mixture Filter For Multi-Target Tracking In Sensor Scanning Mode

  • Xingchen Lu;Dahai Jing;Defu Jiang;Ming Liu;Yiyue Gao;Chenyong Tian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1635-1656
    • /
    • 2023
  • In Bayesian multi-target tracking, the Poisson multi-Bernoulli mixture (PMBM) filter is a state-of-the-art filter based on the methodology of random finite set which is a conjugate prior composed of Poisson point process (PPP) and multi-Bernoulli mixture (MBM). In order to improve the random finite set-based filter utilized in multi-target tracking of sensor scanning, this paper introduces the Poisson multi-Bernoulli mixture filter into time-matching Bayesian filtering framework and derive a tractable and principled method, namely: the time-matching Poisson multi-Bernoulli mixture (TM-PMBM) filter. We also provide the Gaussian mixture implementation of the TM-PMBM filter for linear-Gaussian dynamic and measurement models. Subsequently, we compare the performance of the TM-PMBM filter with other RFS filters based on time-matching method with different birth models under directional continuous scanning and out-of-order discontinuous scanning. The results of simulation demonstrate that the proposed filter not only can effectively reduce the influence of sampling time diversity, but also improve the estimated accuracy of target state along with cardinality.

포아송 분포의 혼합모형을 이용한 기부 횟수 자료 분석 (The Analysis of the Number of Donations Based on a Mixture of Poisson Regression Model)

  • 김인영;박수범;김병수;박태규
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.1-12
    • /
    • 2006
  • 본 논문에서는 2002년에 (사)볼런티어21에서 실시한 설문조사 자료를 이용하여 2001년에 우리나라 개인들이 기부한 횟수에 영향을 주는 유의한 변수들을 식별하였다. 기부횟수의 경험적 분포로 미루어 모집단은 기부를 적게 하는 집단과 많이 하는 집단으로 구성되며 따라서 모집단 분포를 두개 포아송 분포의 혼합분포로 모형화하였다. 이 모형에 기초하여 기부횟수에 영향을 미치는 변수들을 식별하였다. EM알고리즘을 이용하여 모수를 추정하고 2.5%와 97.5%에 기초한 백분위수 신뢰구간을 보완한 BCa(bias-corrected and accelerated) 신뢰구간을 계산하여 유의한 변수들을 찾았다. 연구결과 혼합 포아송 회귀모형에서는 기부횟수가 적은 집단("작은 군")과 기부횟수가 많은 집단("큰 군") 모두에서 소득과 자원봉사의 경험 유무(1:예, 0:아니오)가 기부횟수에 유의적으로 영향을 주는 변수로 밝혀졌다. 또한 두 변수 각각에서 회귀계수가 양수로 나타나 소득이 많을수록, 혹은 자원봉사의 경험이 있는 사람일수록 기부횟수가 증가하는 것을 알 수 있다. 그러나 소득과 자원봉사 변수의 회귀계수는 "작은 군"이 "큰 군"에 비해 더욱 크게 나타나고 있다. "작은 군"보다 "큰 군"의 사람들에게 기부가 생활화되어 있고, 따라서 소득과 자원봉사의 경험 유무가 기부횟수에 미치는 영향이 상대적으로 적은 것으로 파악된다.

영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용 (Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data)

  • 임아경;오만숙
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.505-519
    • /
    • 2006
  • 셀 수 있는 이산 자료(discrete count data)에 대한 분석은 여러 분야에서 활용되고 있지만 영(zero)을 과도하게 포함하고 있는 영과잉 자료는 자료의 성격상 포아송 분포를 따르지 못할 때가 있어 분석에 어려움이 따른다. Zero-Inflated Poisson(ZIP)모형은 이런 어려움을 극복하기 위하여 영에 대한 점확률을 가지는 분포와 포아송 분포를 합성하여 과도한 영과 영이 아닌 자료를 설명하는 모형이다. 설명 변수가 존재할 때는 포아송 분포 부분에서 반응변수의 평균과 공변량사이에 로그선형 연결함수를 사용한 Zero-Inflated Poisson Regression(ZIPR)모형이 사용될 수 있다. 본 논문에서는 Markov Chain Monte Carlo 기법을 이용한 ZIPR모형의 베이지안 추론방법을 제안하고, 이를 실제 구강위생 자료에 적용하며 다른 모형들과 비교한다. 그 결과 베이지안 추론 방법을 적용한 영과잉 모형의 추정오차가 다른 모형들의 추정오차보다 작았고, 예측치가 더 정확했다는 점에서 우수함을 알 수 있었다.

포아송으로부터 부의 이항분포로의 이탈에 대한 검정통계량의 확장 (On the Extension of Test Statistics for Detecting Negative Binomial Departures from the Poisson Assumption)

  • 이선호
    • Journal of the Korean Statistical Society
    • /
    • 제22권2호
    • /
    • pp.171-190
    • /
    • 1993
  • 포아송분포로부터 부의 이항분포로의 이탈을 검색하는 통계량들이 자료의 형태에 따라 여러가지 제시되었다. 그런데 대립가설인 부의 이항분포의 모수화 방법에 따라 분산과 평균의 구조가 변하고 국소 최적 검정 통계량도 달라진다는 것이 알려졌다. 본 논문에서는 대립가설을 일반적인 포아송 혼합분포로까지 확장시키고, 일반적인 형태의 분산과 평균의 구조에도 검정 가능한 새로운 통계량 L을 소개하고 있다. 또한 L 통계량은 포아송 분포로부터 부의 이항분포로의 이탈을 다루는 기존의 여러 통계량들의 일반화된 형태임을 보였다. 점근적 상대효율과 모의 실험을 통하여 L 통계량과 기존의 통계량들을 비교한 결과 분산과 평균사이의 구조에 상관없이 L 통계량이 우수한 것임을 입증하였다.

  • PDF

Bayesian Inferences for Software Reliability Models Based on Beta-Mixture Mean Value Functions

  • Nam, Seung-Min;Kim, Ki-Woong;Cho, Sin-Sup;Yeo, In-Kwon
    • 응용통계연구
    • /
    • 제21권5호
    • /
    • pp.835-843
    • /
    • 2008
  • In this paper, we investigate a Bayesian inference for software reliability models based on mean value functions which take the form of the mixture of beta distribution functions. The posterior simulation via the Markov chain Monte Carlo approach is used to produce estimates of posterior properties. Its applicability is illustrated with two real data sets. We compute the predictive distribution and the marginal likelihood of various models to compare the performance of them. The model comparison results show that the model based on the beta-mixture performs better than other models.

Mechanical properties of Al/Al2O3 and Al/B4C composites

  • Pandey, Vinod K.;Patel, Badri P.;Guruprasad, Siddalingappa
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.263-277
    • /
    • 2016
  • Mechanical properties of $Al/Al_2O_3$ and $Al/B_4C$ composites prepared through powder metallurgy are estimated up to 50% $Al_2O_3$ and 35% $B_4C$ weight fractions using micromechanics models and experiments. The experimental Young's modulus up to 0.40 weight fraction of ceramic is found to lie closely between Ravichandran's/Hashin-Shtrikman lower/upper bounds, and close to self consistent method/Miller and Lannutti method/modified rule of mixture/fuzzy logic method single value predictions. Measured Poisson's ratio lies between rule of mixture/Ravichandran lower and upper bound/modified Ravichandran upper bounds. Experimental Charpy energy lies between Hopkin-chamis method/equivalent charpy energy/Ravichandran lower limit up to 20%, and close to the reciprocal rule of mixture for higher $Al_2O_3$ content. Rockwell hardness (RB) and Micro-hardness of $Al/Al_2O_3$ are closer to modified rule of mixture predictions.

Weighted zero-inflated Poisson mixed model with an application to Medicaid utilization data

  • Lee, Sang Mee;Karrison, Theodore;Nocon, Robert S.;Huang, Elbert
    • Communications for Statistical Applications and Methods
    • /
    • 제25권2호
    • /
    • pp.173-184
    • /
    • 2018
  • In medical or public health research, it is common to encounter clustered or longitudinal count data that exhibit excess zeros. For example, health care utilization data often have a multi-modal distribution with excess zeroes as well as a multilevel structure where patients are nested within physicians and hospitals. To analyze this type of data, zero-inflated count models with mixed effects have been developed where a count response variable is assumed to be distributed as a mixture of a Poisson or negative binomial and a distribution with a point mass of zeros that include random effects. However, no study has considered a situation where data are also censored due to the finite nature of the observation period or follow-up. In this paper, we present a weighted version of zero-inflated Poisson model with random effects accounting for variable individual follow-up times. We suggested two different types of weight function. The performance of the proposed model is evaluated and compared to a standard zero-inflated mixed model through simulation studies. This approach is then applied to Medicaid data analysis.

NHPP 소프트웨어 신뢰도 모형에 대한 모수 추정 비교 (The Comparison of Parameter Estimation for Nonhomogeneous Poisson Process Software Reliability Model)

  • 김희철;이상식;송영재
    • 정보처리학회논문지D
    • /
    • 제11D권6호
    • /
    • pp.1269-1276
    • /
    • 2004
  • 본 논문에서는 기존의 소프트웨어 신뢰성 모형인 Goel-Okumoto 모형과 Yamada-Ohba-Osaki 모형을 재조명하고 또, 랄리 분포를 이용한 랄리 모형을 적용하여 모수 추정방법을 연구하였다. 본 연구에서는 기존의 최우추정법과 잠재변수를 도입하여 깁스 샘플링(Gibbs sampling)을 이용한 베이지안 모수추정 방법을 비교하고 그 특징을 분석하고자 한다. 또, 효율적 모형을 위한 모형선택으로서 잔차제곱합(Sum of the squared errors ; SSE)과 Braun 통계량을 적용하여 모형들에 대한 효율성 입증방법을 설명하였다. 그리고 수치적인 예로서 실제 자료를 이용한 수치 견과를 나열하였다. 이 접근방법을 기초로 하여 수명분포가 중첩(Superposition) 및 혼합(Mixture)인 경우에 대한 접근방법이 연구되었으면 한다.

Propagation of elastic waves in thermally affected embedded carbon-nanotube-reinforced composite beams via various shear deformation plate theories

  • Ebrahimi, Farzad;Rostami, Pooya
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.495-504
    • /
    • 2018
  • The current study is dedicated to study the thermal effects of wave propagation in beams, reinforced by carbon nanotubes (CNT). Beams, made up of carbon nanotube reinforced composite (CNTRC) are the future materials in various high tech industries. Herein a Winkler elastic foundation is assumed in order to make the model more realistic. Mostly, CNTs are pervaded in cross section of beam, in various models. So, it is tried to use four of the most profitable reconstructions. The homogenization of elastic and thermal properties such as density, Yong's module, Poisson's ratio and shear module of CNTRC beam, had been done by the demotic rule of mixture to homogenize, which gives appropriate traits in such settlements. To make this investigation, a perfect one, various shear deformation theories had been utilized to show the applicability of this theories, in contrast to their theoretical face. The reigning equation had been derived by extended Hamilton principle and the culminant equation solved analytically by scattering relations for propagation of wave in solid bodies. Results had been verified by preceding studies. It is anticipated that current results can be applicable in future studies.

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • 응용통계연구
    • /
    • 제25권6호
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.