• Title/Summary/Keyword: Poisson count data

Search Result 83, Processing Time 0.025 seconds

Modeling clustered count data with discrete weibull regression model

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.413-420
    • /
    • 2022
  • In this study we adapt discrete weibull regression model for clustered count data. Discrete weibull regression model has an attractive feature that it can handle both under and over dispersion data. We analyzed the eighth Korean National Health and Nutrition Examination Survey (KNHANES VIII) from 2019 to assess the factors influencing the 1 month outpatient stay in 17 different regions. We compared the results using clustered discrete Weibull regression model with those of Poisson, negative binomial, generalized Poisson and Conway-maxwell Poisson regression models, which are widely used in count data analyses. The results show that the clustered discrete Weibull regression model using random intercept model gives the best fit. Simulation study is also held to investigate the performance of the clustered discrete weibull model under various dispersion setting and zero inflated probabilities. In this paper it is shown that using a random effect with discrete Weibull regression can flexibly model count data with various dispersion without the risk of making wrong assumptions about the data dispersion.

Bayesian Multiple Change-Point Estimation for Single Quantum Dot Luminescence Intensity Data (단일 양자점으로부터 발생한 발광세기 변화에 대한 베이지안 다중 변화점 추정)

  • Kima, Jaehee;Kimb, Hahkjoon
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.4
    • /
    • pp.569-579
    • /
    • 2013
  • In the field of single-molecule spectroscopy, it is essential to analyze luminescence Intensity changes that result from a single molecule. With the CdSe/ZnS core-shell structured quantum dot photon emission data Bayesian multiple change-point estimation is done with the gamma prior for Poisson parameters and truncated Poisson distribution for the number of change-points.

Modelling Count Responses with Overdispersion

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.761-770
    • /
    • 2012
  • We frequently encounter outcomes of count that have extra variation. This paper considers several alternative models for overdispersed count responses such as a quasi-Poisson model, zero-inflated Poisson model and a negative binomial model with a special focus on a generalized linear mixed model. We also explain various goodness-of-fit criteria by discussing their appropriateness of applicability and cautions on misuses according to the patterns of response categories. The overdispersion models for counts data have been explained through two examples with different response patterns.

Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data (영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용)

  • Lim, Ah-Kyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.505-519
    • /
    • 2006
  • We consider zero-inflated count data, which is discrete count data but has too many zeroes compared to the Poisson distribution. Zero-inflated data can be found in various areas. Despite its increasing importance in practice, appropriate statistical inference on zero-inflated data is limited. Classical inference based on a large number theory does not fit unless the sample size is very large. And regular Poisson model shows lack of St due to many zeroes. To handle the difficulties, a mixture of distributions are considered for the zero-inflated data. Specifically, a mixture of a point mass at zero and a Poisson distribution is employed for the data. In addition, when there exist meaningful covariates selected to the response variable, loglinear link is used between the mean of the response and the covariates in the Poisson distribution part. We propose a Bayesian inference for the zero-inflated Poisson regression model by using a Markov Chain Monte Carlo method. We applied the proposed method to a Korean oral hygienic data and compared the inference results with other models. We found that the proposed method is superior in that it gives small parameter estimation error and more accurate predictions.

Poisson linear mixed models with ARMA random effects covariance matrix

  • Choi, Jiin;Lee, Keunbaik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.927-936
    • /
    • 2017
  • To analyze longitudinal count data, Poisson linear mixed models are commonly used. In the models the random effects covariance matrix explains both within-subject variation and serial correlation of repeated count outcomes. When the random effects covariance matrix is assumed to be misspecified, the estimates of covariates effects can be biased. Therefore, we propose reasonable and flexible structures of the covariance matrix using autoregressive and moving average Cholesky decomposition (ARMACD). The ARMACD factors the covariance matrix into generalized autoregressive parameters (GARPs), generalized moving average parameters (GMAPs) and innovation variances (IVs). Positive IVs guarantee the positive-definiteness of the covariance matrix. In this paper, we use the ARMACD to model the random effects covariance matrix in Poisson loglinear mixed models. We analyze epileptic seizure data using our proposed model.

An application to Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the reponse variables have excess zeros, it is not easy to apply the Poisson regression model. In this paper, we study and simulate the zero-inflated Poisson regression model. An real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of zero-inflated Poisson model with the Poisson regression and decision tree model.

  • PDF

Estimating the Economic Value of Recreation Sea Fishing in the Yellow Sea: An Application of Count Data Model (가산자료모형을 이용한 서해 태안군 유어객의 편익추정)

  • Choi, Jong Du
    • Environmental and Resource Economics Review
    • /
    • v.23 no.2
    • /
    • pp.331-347
    • /
    • 2014
  • The purpose of this study is to estimate the economic value of the recreational sea fishing in the Yellow Sea using count data model. For estimating consumer surplus, we used several count data model of travel cost recreation demand such as a poisson model(PM), a negative binomial model(NBM), a truncated poisson model(TPM), and a truncated negative binomial model(TNBM). Model results show that there is no exist the over-dispersion problem and a NBM was statistically more suitable than the other models. All parameters estimated are statistically significant and theoretically valid. The NBM was applied to estimate the travel demand and consumer surplus. The consumer surplus pre trip was estimated to be 254,453won, total consumer surplus per person and per year 1,536,896won.

Bayesian Conway-Maxwell-Poisson (CMP) regression for longitudinal count data

  • Morshed Alam ;Yeongjin Gwon ;Jane Meza
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • Longitudinal count data has been widely collected in biomedical research, public health, and clinical trials. These repeated measurements over time on the same subjects need to account for an appropriate dependency. The Poisson regression model is the first choice to model the expected count of interest, however, this may not be an appropriate when data exhibit over-dispersion or under-dispersion. Recently, Conway-Maxwell-Poisson (CMP) distribution is popularly used as the distribution offers a flexibility to capture a wide range of dispersion in the data. In this article, we propose a Bayesian CMP regression model to accommodate over and under-dispersion in modeling longitudinal count data. Specifically, we develop a regression model with random intercept and slope to capture subject heterogeneity and estimate covariate effects to be different across subjects. We implement a Bayesian computation via Hamiltonian MCMC (HMCMC) algorithm for posterior sampling. We then compute Bayesian model assessment measures for model comparison. Simulation studies are conducted to assess the accuracy and effectiveness of our methodology. The usefulness of the proposed methodology is demonstrated by a well-known example of epilepsy data.

Estimating the Economic Value of the Songieong Beach Using A Count Data Model: - Off-season Estimating Value of the Beach - (가산자료모형을 이용한 송정 해수욕장의 경제적 가치추정: - 비수기 해수욕장의 가치추정 -)

  • Heo, Yun-Jeong;Lee, Seung-Lae
    • The Journal of Fisheries Business Administration
    • /
    • v.38 no.2
    • /
    • pp.79-101
    • /
    • 2007
  • The purpose of this study is to estimate the economic value of the Songieong Beach in Off-season, using a Individual Travel Cost Model(ITCM). Songieong Beach is located in Busan but far away from city. These days, however, the increased rate of traffic inflow to the Songieong beach and the five-day working week are reflected in the trend analysis. Moreover, people have changed psychological value. For that reason, visitors are on the increase on the beach in off-season. The ITCM is applied to estimate non-market value or environmental Good like a Contingent Valuation Method and Hedonic Price Model etc. The ITCM was derived from the Count Data Model(i.e. Poisson and Negative Binomial model). So this paper compares Poisson and negative binomial count data models to measure the tourism demands. The data for the study were collected from the Songjeong Beach on visitors over the a week from November 1 through November 23, 2006. Interviewers were instructed to interview only individuals. So the sample was taken in 113. A dependent variable that is defined on the non-negative integers and subject to sampling truncation is the result of a truncated count data process. This paper analyzes the effects of determinants on visitors' demand for exhibition using a class of maximum-likelihood regression estimators for count data from truncated samples, The count data and truncated models are used primarily to explain non-negative integer and truncation properties of tourist trips as suggested by the economic valuation literature. The results suggest that the truncated negative binomial model is improved overdispersion problem and more preferred than the other models in the study. This paper is not the same as the others. One thing is that Estimating Value of the Beach in off-season. The other thing is this study emphasizes in particular 'travel cost' that is not only monetary cost but also including opportunity cost of 'travel time'. According to the truncated negative binomial model, estimates the Consumer Surplus(CS) values per trip of about 199,754 Korean won and the total economic value was estimated to be 1,288,680 Korean won.

  • PDF

A Bayesian joint model for continuous and zero-inflated count data in developmental toxicity studies

  • Hwang, Beom Seuk
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.239-250
    • /
    • 2022
  • In many applications, we frequently encounter correlated multiple outcomes measured on the same subject. Joint modeling of such multiple outcomes can improve efficiency of inference compared to independent modeling. For instance, in developmental toxicity studies, fetal weight and number of malformed pups are measured on the pregnant dams exposed to different levels of a toxic substance, in which the association between such outcomes should be taken into account in the model. The number of malformations may possibly have many zeros, which should be analyzed via zero-inflated count models. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint modeling framework for continuous and count outcomes with excess zeros. In our model, zero-inflated Poisson (ZIP) regression model would be used to describe count data, and a subject-specific random effects would account for the correlation across the two outcomes. We implement a Bayesian approach using MCMC procedure with data augmentation method and adaptive rejection sampling. We apply our proposed model to dose-response analysis in a developmental toxicity study to estimate the benchmark dose in a risk assessment.