• Title/Summary/Keyword: Poisson Distribution

Search Result 590, Processing Time 0.029 seconds

Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory

  • Bouchafa, Ali;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1493-1515
    • /
    • 2015
  • A new refined hyperbolic shear deformation theory (RHSDT), which involves only four unknown functions as against five in case of other shear deformation theories, is presented for the thermoelastic bending analysis of functionally graded sandwich plates. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson's ratio of the faces, and thermal expansion coefficients are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. The influences played by the transverse shear deformation, thermal load, plate aspect ratio and volume fraction distribution are studied. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of functionally graded plates.

The study for NHPP Software Reliability Model based on Kappa(2) distribution (Kappa(2) NHPP에 의한 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.689-696
    • /
    • 2005
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the Kappa(2) reliability model, which can capture the nomotonic decreasing nature of the failure occurrence rate per fault. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on sum of the squared errors and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set, SYS2(Allen P.Nikora and Michael R.Lyu), for the sake of proposing two parameter of the Kappa distribution, was employed. This analysis of failure data compared with the Kappa model and the existing model using arithmetic and Laplace trend tests, bias tests is presented.

  • PDF

Measurement of the coherence time of the light from a quasi-thermal source (준열광원의 결맞음시간 측정)

  • Kim, Hyun-Oh;Ha, Yang;Shin, Jong-Tae;Kim, Tae-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.341-347
    • /
    • 1996
  • The photocount distribution from a quasi-thermal light source, a moving ground glass disk (surface roughness; 9 ${\mu}{\textrm}{m}$) illuminated by a well-stabilized He-Ne laser, is measured by a photon counting system, and analyzed with theoretical calculations. The distribution approaches the Poisson distribution for the long coherence time ${\tau}_c$ compared to the measuring time T. The coherence time ${\tau}_c$ of the quasi-thermal source can be changed by controlling the velocity v of the motor driving the glass disk. By the comparison of experimental results and theory for the condition of T/ ${\tau}_c$ >>1, the coherence time ${\tau}_c$ of the quasi-thermal source is turned out to be in the range of 31.43 $mutextrm{s}$~2.48 $mutextrm{s}$ according to the circumferential velocity of the disk, and compared with the simple calculation of $\sigma$/v.

  • PDF

Subthreshold Current Model for Threshold Voltage Shift Analysis in Junctionless Cylindrical Surrounding Gate(CSG) MOSFET (무접합 원통형 게이트 MOSFET에서 문턱전압이동 분석을 위한 문턱전압이하 전류 모델)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.789-794
    • /
    • 2017
  • Subthreshold current model is presented using analytical potential distribution of junctionless cylindrical surrounding-gate (CSG) MOSFET and threshold voltage shift is analyzed by this model. Junctionless CSG MOSFET is significantly outstanding for controllability of gate to carrier flow due to channel surrounded by gate. Poisson's equation is solved using parabolic potential distribution, and subthreshold current model is suggested by center potential distribution derived. Threshold voltage is defined as gate voltage corresponding to subthreshold current of $0.1{\mu}A$, and compared with result of two dimensional simulation. Since results between this model and 2D simulation are good agreement, threshold voltage shift is investigated for channel dimension and doping concentration of junctionless CSG MOSFET. As a result, threshold voltage shift increases for large channel radius and oxide thickness. It is resultingly shown that threshold voltage increases for the large difference of doping concentrations between source/drain and channel.

The NHPP Bayesian Software Reliability Model Using Latent Variables (잠재변수를 이용한 NHPP 베이지안 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.117-126
    • /
    • 2006
  • Bayesian inference and model selection method for software reliability growth models are studied. Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. In this paper, could avoid multiple integration using Gibbs sampling, which is a kind of Markov Chain Monte Carlo method to compute the posterior distribution. Bayesian inference for general order statistics models in software reliability with diffuse prior information and model selection method are studied. For model determination and selection, explored goodness of fit (the error sum of squares), trend tests. The methodology developed in this paper is exemplified with a software reliability random data set introduced by of Weibull distribution(shape 2 & scale 5) of Minitab (version 14) statistical package.

  • PDF

Energy Efficiency Analysis and Optimization of Multiantenna Heterogeneous Cellular Networks Modeled by Matérn Hard-core Point Process

  • Chen, Yonghong;Yang, Jie;Cao, Xuehong;Zhang, Shibing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3366-3383
    • /
    • 2020
  • The Poisson point process (PPP) is widely used in wireless network modeling and performance analysis because it can provide tractable results for heterogeneous cellular networks (HetNets) analysis. However, it cannot accurately reflect the spatial distribution characteristics of the actual base stations (BSs). Considering the fact that the distribution of macro base stations (MBSs) is exclusive, the deployment of MBSs is modeled by the Matérn hard-core point process (MHCPP), and the deployment of pico base stations (PBSs) is modeled by PPP. This paper studies the performance of multiantenna HetNets and improves the energy efficiency (EE) of HetNets by optimizing the transmit power of PBSs. We use a simple approximate method to study the signal-to-interference ratio (SIR) distribution in two-tier MHCPP-PPP HetNets and derive the coverage probability, average data rate and EE of HetNets. Then, an optimization algorithm is proposed to improve the EE of HetNets. Finally, three transmission technologies are simulated and analyzed. The results show that multiantenna transmission has better system performance than single antenna transmission and that selecting the appropriate transmit power for a PBS can effectively improve the EE of the system. In addition, two-tier MHCPP-PPP HetNets have higher EE than two-tier PPP-PPP HetNets.

Analytical Evaluation of FFR-aided Heterogeneous Cellular Networks with Optimal Double Threshold

  • Abdullahi, Sani Umar;Liu, Jian;Mohadeskasaei, Seyed Alireza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3370-3392
    • /
    • 2017
  • Next Generation Beyond 4G/5G systems will rely on the deployment of small cells over conventional macrocells for achieving high spectral efficiency and improved coverage performance, especially for indoor and hotspot environments. In such heterogeneous networks, the expected performance gains can only be derived with the use of efficient interference coordination schemes, such as Fractional Frequency Reuse (FFR), which is very attractive for its simplicity and effectiveness. In this work, femtocells are deployed according to a spatial Poisson Point Process (PPP) over hexagonally shaped, 6-sector macro base stations (MeNBs) in an uncoordinated manner, operating in hybrid mode. A newly introduced intermediary region prevents cross-tier, cross-boundary interference and improves user equipment (UE) performance at the boundary of cell center and cell edge. With tools of stochastic geometry, an analytical framework for the signal-to-interference-plus-noise-ratio (SINR) distribution is developed to evaluate the performance of all UEs in different spatial locations, with consideration to both co-tier and cross-tier interference. Using the SINR distribution framework, average network throughput per tier is derived together with a newly proposed harmonic mean, which ensures fairness in resource allocation amongst all UEs. Finally, the FFR network parameters are optimized for maximizing average network throughput, and the harmonic mean using a fair resource assignment constraint. Numerical results verify the proposed analytical framework, and provide insights into design trade-offs between maximizing throughput and user fairness by appropriately adjusting the spatial partitioning thresholds, the spectrum allocation factor, and the femtocell density.

A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model (Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발)

  • Kim, Jang Gyeong;Kwon, Hyun Han;Kim, Dong Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.821-831
    • /
    • 2014
  • Stochastic rainfall generators or stochastic simulation have been widely employed to generate synthetic rainfall sequences which can be used in hydrologic models as inputs. The calibration of Poisson cluster stochastic rainfall generator (e.g. Modified Bartlett-Lewis Rectangular Pulse, MBLRP) is seriously affected by local minima that is usually estimated from the local optimization algorithm. In this regard, global optimization techniques such as particle swarm optimization and shuffled complex evolution algorithm have been proposed to better estimate the parameters. Although the global search algorithm is designed to avoid the local minima, reliable parameter estimation of MBLRP model is not always feasible especially in a limited parameter space. In addition, uncertainty associated with parameters in the MBLRP rainfall generator has not been properly addressed yet. In this sense, this study aims to develop and test a Bayesian model based parameter estimation method for the MBLRP rainfall generator that allow us to derive the posterior distribution of the model parameters. It was found that the HBM based MBLRP model showed better performance in terms of reproducing rainfall statistic and underlying distribution of hourly rainfall series.

The Study for NHPP Software Reliability Model based on Chi-Square Distribution (카이제곱 NHPP에 의한 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.45-53
    • /
    • 2006
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the $x^2$ reliability model, which can capture the increasing nature of the failure occurrence rate per fault. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE, AIC statistics and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set, SYS2(Allen P.Nikora and Michael R.Lyu), for the sake of proposing shape parameter of the $x^2$ distribution using the degree of freedom, was employed. This analysis of failure data compared with the $x^2$ model and the existing model using arithmetic and Laplace trend tests, Kolmogorov test is presented.

  • PDF

Relation of Conduction Path and Subthreshold Swing for Doping Profile of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET의 도핑분포함수에 따른 전도중심과 문턱전압이하 스윙의 관계)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1925-1930
    • /
    • 2014
  • This paper has analyzed the relation of conduction path and subthreshold swing for doping profile in channel of asymmetric double gate(DG) MOSFET. Since the channel size of asymmetric DGMOSFET is greatly small and number of impurity is few, the high doping channel is analyzed. The analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. The conduction path and subthreshold swing are derived from this analytical potential distribution, and those are investigated for variables of doping profile, projected range and standard projected deviation, according to the change of channel length and thickness. As a result, subthreshold swing is reduced when conduction path is approaching to top gate, and that is increased with a decrease of channel length and a increase of channel thickness due to short channel effects.