• Title/Summary/Keyword: PointNet++

Search Result 630, Processing Time 0.024 seconds

A REVIEW AND INTERPRETATION OF RIA EXPERIMENTS

  • Vitanza, Carlo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.591-602
    • /
    • 2007
  • The results of Reactivity-Initiated Accidents (RIA) experiments have been analysed and the main variables affecting the fuel failure propensity identified. Fuel burn-up aggravates the mechanical loading of the cladding, while corrosion, or better the hydrogen absorbed in the cladding as a consequence of corrosion, may under some conditions make the cladding brittle and more susceptible to failure. Experiments point out that corrosion impairs the fuel resistance for RIA transient occurring at cold conditions, whereas there is no evidence of important embrittlement effects at hot conditions, unless the cladding was degraded by oxide spalling. A fuel failure threshold correlation has been derived and compared with experimental data relevant for BWR and PWR fuel. The correlation can be applied to both cold and hot RIA transients, account taken for the lower ductility at cold conditions and for the different initial enthalpy. It can also be used for non-zero power transients, provided that a term accounting for the start-up power is incorporated. The proposed threshold is easy to use and reproduces the results obtained in the CABRI and NSRR tests in a rather satisfactory manner. The behaviour of advanced PWR alloys and of MOX fuel is discussed in light of the correlation predictions. Finally, a probabilistic approach has been developed in order to account for the small scatter of the failure predictions. This approach completes the RIA failure assessment in that after determining a best estimate failure threshold, a failure probability is inferred based on the spreading of data around the calculated best estimate value.

ANALOG COMPUTING FOR A NEW NUCLEAR REACTOR DYNAMIC MODEL BASED ON A TIME-DEPENDENT SECOND ORDER FORM OF THE NEUTRON TRANSPORT EQUATION

  • Pirouzmand, Ahmad;Hadad, Kamal;Suh, Kune Y.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.243-256
    • /
    • 2011
  • This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution.

A CONCEPTUAL STUDY OF PYROPROCESSING FOR RECOVERING ACTINIDES FROM SPENT OXIDE FUELS

  • Yoo, Jae-Hyung;Seo, Chung-Seok;Kim, Eung-Ho;Lee, Han-Soo
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.581-592
    • /
    • 2008
  • In this study, a conceptual pyroprocess flowsheet has been devised by combining several dry-type unit processes; its applicability as an alternative fuel cycle technology was analyzed. A key point in the evaluation of its applicability to the fuel cycle was the recovery yield of fissile materials from spent fuels as well as the proliferation resistance of the process. The recovery yields of uranium and transuranic elements (TRU) were obtained from a material balance for every unit process composing the whole pyroprocess. The material balances for several elemental groups of interest such as uranium, TRU, rare earth, gaseous fission products, and heat generating elements were calculated on the basis of the knowledge base that is available from domestic and foreign experimental results or technical information presented in open literature. The calculated result of the material balance revealed that uranium and TRU could be recovered at 98.0% and 97.0%, respectively, from a typical PWR spent fuel. Furthermore, the anticipated TRU product was found to emit a non-negligible level of $\gamma$-ray and a significantly higher level of neutrons compared to that of a typical plutonium product obtained from the PUREX process. The results indicate that the product from this conceptual pyroprocessing should be handled in a shielded cell and that this will contribute favorably to retaining proliferation resistance.

Design considerations for teleoperation systems operating in gas-tight argon cells

  • Yu, Seungnam;Lee, Jongkwang;Park, Byungsuk;Cho, Ilje;Lee, Hyojik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1717-1726
    • /
    • 2017
  • In the nuclear industry, mechanical engineers spend a significant portion of their time designing equipment such as manipulators, bogies, mechanical grippers, and so on. Some customized designs can be considered as standard mechanical equipment in this area, although it is not unusual to find that an existing design cannot simply be copied from one project to another. Varied performance requirements can dictate that redesign, often quite extensive redesign, is required. However, if something similar has been done before, engineers could use that as a starting point for the new project. In this regard, this study presents several guidelines inspired by previous design knowledge for similar development cases. Moreover, this study presents more detailed suggestions such as design guidelines for an argon-based hot cell atmosphere and design experience for a large-scale practical hot cell facility. Design considerations and case studies dealt with in this study are dedicated to teleoperation manipulators that are used at a large-scale argon cell facility for pyroprocess integrated inactive demonstration (PRIDE), at the Korea Atomic Energy Research Institute. In particular, for case studies to support the suggested recommendations, a fabricated telemanipulator system for PRIDE is introduced, and several kinds of experimental results associated with it are presented.

Detection of voluminous gamma-ray source with a collimation beam geometry and comparison with peak efficiency calculations of EXVol

  • Kang, M.Y.;Sun, G.M.;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2601-2606
    • /
    • 2020
  • In this study, we expanded the performance of the existing EXVol code and performed empirical experiments and calculations. A high-resolution gamma spectroscopy system was constructed, and a standard point source and a standard volume source were measured with an HPGe detector with 43.1% relative efficiency. EXVol was verified by quantitative comparison of the detection efficiencies determined by measurements and calculations. To introduce the concept of the detector scanning that occurs in the actual measurement into the EXVol code, a collimator was placed between the source and detector. The detection efficiency was determined in the asymmetric arrangement of the source and detector with a collimator. A collimator made of lead with a diameter of 15 mm and a thickness of 50 mm was installed between the source and the detector to determine the detection efficiency at a specific location. The calculation result was contour plotted so that the distribution of detection efficiency could be visually confirmed. The relative deviation between the measurements and calculations for the coaxial and asymmetric structures was 10%, and that for the collimation structure was 20%. The results of this study can be applied to research using γ-ray measurements.

Development of Volleyball Match Analysis Program through Polygon Clipping Algorithm (다각형 클리핑 알고리즘(Polygon Clipping Algorithm)을 이용한 배구경기 분석 프로그램 개발)

  • Hong, Seong-Jin;Lee, Ki-Chung
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.45-51
    • /
    • 2013
  • The current study developed the analysis program by employing the Polygon Clipping Algorithm to calculate the open area on the court when players try to spike a ball. The program consists of two kinds of output screen. First, on the main output screen, it is possible to calculate both blocked area by net and blockers, and opened area to avoid the blocked area when players spike the ball. Additionally, the secondary output screen shows the moving path of setter and the location of set. Main output screen indicates hitting points of spiking, blocking, and open area. Also, it is possible to analyze the movement of setter, location of set, and hitting point of attacker. The program was tested by comparing real coordinate value and location coordinate value which is operated on the program. To apply this program in the field, future study needs to develop the program that can calculate three dimensions coordinate fast by tracking the location of players or ball in real time.

Moisture Sorption and Thermodynamic Properties of Vacuum-Dried Capsosiphon fulvescens Powder

  • Zuo, Li;Rhim, Jong-Whan;Lee, Jun Ho
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.3
    • /
    • pp.215-220
    • /
    • 2015
  • The moisture sorption isotherms of vacuum-dried edible green alga (Capsosiphon fulvescens) powders were determined at 25, 35, and $45^{\circ}C$ and water activity ($a_w$) in the range of 0.11~0.94. An inversion effect of temperature was found at high water activity (>0.75). Various mathematical models were fitted to the experimental data, and Brunauer, Emmett, and Teller model was found to be the most suitable model describing the relationship between equilibrium moisture content and water activity (<0.45). Henderson model could also provide excellent agreement between the experimental and predicted values despite of the intersection point. Net isosteric heat of adsorption decreased from 15.77 to 9.08 kJ/mol with an increase in equilibrium moisture content from 0.055 to $0.090kg\;H_2O/kg$ solids. The isokinetic temperature ($T_{\beta}$) was 434.79 K, at which all the adsorption reactions took place at the same rate. The enthalpy-entropy compensation suggested that the mechanism of the adsorption process was shown to be enthalpy-driven.

Fluency in Technology for Mathematics Education (수학교육에서 컴퓨터 환경이 지니는 유창성의 의미)

  • Kim, Hwa-Kyung
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.2
    • /
    • pp.229-248
    • /
    • 2006
  • In creative society, fluency in technology means the ability to reformulate knowledge, to express oneself creatively and appropriately, to produce and generate information in computer environment. Fluency in technology is essential for mathematics education with a point of constructivist view. In this paper, we study the meaning of fluency in technology, related to mathematics education. For this purpose, we suggest Papert's constructionism as a theoretical background and consider the principle of 'Learning through design' for fluency in technology. And we consider some principles for designing a mathematical microworld and implement a mathematical microworld for fluency in technology. With this microworld, we consider the after-school-program where students have participated a design activity.

  • PDF

Investigation of Burst Pressures in PWR Primary Pressure Boundary Components

  • Namgung, Ihn;Giang, Nguyen Hoang
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.236-245
    • /
    • 2016
  • In a reactor coolant system of a nuclear power plant (NPP), an overpressure protection system keeps pressure in the loop within 110% of design pressure. However if the system does not work properly, pressure in the loop could elevate hugely in a short time. It would be seriously disastrous if a weak point in the pressure boundary component bursts and releases radioactive material within the containment; and it may lead to a leak outside the containment. In this study, a gross deformation that leads to a burst of pressure boundary components was investigated. Major components in the primary pressure boundary that is structurally important were selected based on structural mechanics, then, they were used to study the burst pressure of components by finite element method (FEM) analysis and by number of closed forms of theoretical relations. The burst pressure was also used as a metric of design optimization. It revealed which component was the weakest and which component had the highest margin to bursting failure. This information is valuable in severe accident progression prediction. The burst pressures of APR-1400, AP1000 and VVER-1000 reactor coolant systems were evaluated and compared to give relative margins of safety.

DEVELOPMENT OF AN INTEGRATED RISK ASSESSMENT FRAMEWORK FOR INTERNAL/EXTERNAL EVENTS AND ALL POWER MODES

  • Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.459-470
    • /
    • 2012
  • From the PSA point of view, the Fukushima accident of Japan in 2011 reveals some issues to be re-considered and/or improved in the PSA such as the limited scope of the PSA, site risk, etc. KAERI (Korea Atomic Energy Research Institute) has performed researches on the development of an integrated risk assessment framework related to some issues arisen after the Fukushima accident. This framework can cover the internal PSA model and external PSA models (fire, flooding, and seismic PSA models) in the full power and the low power-shutdown modes. This framework also integrates level 1, 2 and 3 PSA to quantify the risk of nuclear facilities more efficiently and consistently. We expect that this framework will be helpful to resolve the issue regarding the limited scope of PSA and to reduce some inconsistencies that might exist between (1) the internal and external PSA, and (2) full power mode PSA and low power-shutdown PSA models. In addition, KAERI is starting researches related to the extreme external events, the risk assessment of spent fuel pool, and the site risk. These emerging issues will be incorporated into the integrated risk assessment framework. In this paper the integrated risk assessment framework and the research activities on the emerging issues are outlined.