• Title/Summary/Keyword: Point-position control

Search Result 602, Processing Time 0.029 seconds

Position Estimation Using Neural Network for Navigation of Wheeled Mobile Robot (WMR) in a Corridor

  • Choi, Kyung-Jin;Lee, Young-Hyun;Park, Chong-Kug
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1259-1263
    • /
    • 2004
  • This paper describes position estimation algorithm using neural network for the navigation of the vision-based wheeled mobile robot (WMR) in a corridor with taking ceiling lamps as landmark. From images of a corridor the lamp's line on the ceiling in corridor has a specific slope to the lateral position of the WMR. The vanishing point produced by the lamp's line also has a specific position to the orientation of WMR. The ceiling lamps have a limited size and shape like a circle in image. Simple image processing algorithms are used to extract lamps from the corridor image. Then the lamp's line and vanishing point's position are defined and calculated at known position of WMR in a corridor. To estimate the lateral position and orientation of WMR from an image, the relationship between the position of WMR and the features of ceiling lamps have to be defined. But it is hard because of nonlinearity. Therefore, data set between position of WMR and features of lamps are configured. Neural network are composed and learned with data set. Back propagation algorithm(BPN) is used for learning. And it is applied in navigation of WMR in a corridor.

  • PDF

Integrated Structure and Controller Design of Single-Link Flexible Arm for Improving the Performance of Position Control (유연 외팔보의 위치제어 성능향상을 위한 형상 및 제어기 통합설계)

  • Lee, Min-U;Park, Jang-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.120-129
    • /
    • 2002
  • An integrated structure and controller design approach for rotating cantilever beam is presented. An optimization method is developed for improving positioning performance considering the elastic deformations during high speed rotation and adopting the beam shape and the control gains as design variables. For this end, a dynamic model is setup by the finite element method according to the shape of the beam. The mass and stiffness of the beam are distributed in such a way that the closed-loop poles of the control system should be located leftmost in the complex s-plane. For optimization method, the simulated annealing method is employed which has higher probability to find the global minimum than the gradient-based down-hill methods. Sequential design and simultaneous design methods are proposed to obtain the optimal shape and controller. Simulations are performed with new designs by the two methods to verify the effectiveness of the approach and the results show that the settling time is improved for point-to-point position controls.

The Effect of Real-time Ultrasound Imaging Feedback during Abdominal Hollowing in Four Point Kneeling to Healthy Men

  • Park, Du-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • Purpose: This study investigated the effects of visual feedback during abdominal hollowing (AH) in four point kneeling position, using real-time ultrasound imaging through measurement of the changes in the thickness of transversus abdominis (TrA), internal abdominal oblique (IO), and external abdominal oblique (EO). Methods: The subjects of this study were 32 healthy males who were divided intothe experimental group of 16 subjects and the control group of 16 subjects. The real-time ultrasound feedback was applied to the experimental group while they were educated on the AH exercise in four point kneeling whereas only general education and training were given to the control group. After the training, the changes in the thickness of abdominal muscles during AH in four point kneeling were compared between the experimental group and the control group. Results: The differences of the changes in the thickness of TrA and EO between the two groups were statistically significant. Conclusion: The experimental group experienced a higher increase in the thickness of TrA than the control group while the thickness of IO and EO of the experimental.

Automatic Depth Control System for Tractor Implement (트랙터 작업기의 경심 자동제어시스템)

  • Choi, C.H.;Na, K.W.;Kim, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.328-343
    • /
    • 1993
  • To control depth of tractor implement, an automatic depth control system based upon microcomputer was developed. This system consists of data aquisition system to measure and to record travel speed, draft and depth of the implement, hydraulic system to control the implement depth and 3-point hitch to attach the implement. Program, written in C language, was able to select position control, draft control and mixed control. To analyze parameters affecting this system, the performance of the system was evaluated through use of computer simulation and verified in soil bin experiments. 3-point hitch was lifted by hydraulic pressure and lowered by implement weight. Dead band was one of the important factors which affect the stability and the accuracy of the system. The system became unstable when the flow rate was increased or when the dead band was decreased. The position control mode with on-off control showed the great ability to control the implement at the given plowing depth. With the draft control, the tractor load could be reduced, however the plowing depth was changed unexpectedly when the soil was hard and inconsistent. The mixed control could improve the performance of the system to maintain the plowing depth without overload of the tractor.

  • PDF

A Study on the Modeling and Control of High-Speed/High-Accuracy Position Control System (고속/정밀 위치제어시스템의 모델인 및 제어에 관한 연구)

  • Park, Min-Gyu;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.399-406
    • /
    • 2001
  • This paper presents a dynamic modeling and a sliding mode controller for the high-speed/high-accuracy position control system. The selected target system is the wire bonder assembly which is used in the semiconductor assembly process. This system is a reciprocating one around the pivot point that consists of VCM(voice coil motor) as an actuator and transducer horn as a bonding tool. For the modeling elements, the sys-tem is divided into electrical circuit, magnetic circuit and mechanical system. Each system is modeled using the bond graph method and united into the full system. Two major aims are considered in the design of the controller. The first one is that the horn must track the given reference trajectory. The second one is that the controller must be realizable by using the DSP board. Computer simulation and experimental results show that the designed sliding mode controller provides better performance than the PID controller.

  • PDF

POSITION CONTROL OF A FLEXIBLE ROBOT ARM UNDER IMPULSIVE LOADING THE TIP

  • Chonan, Seiji;Yuki, Yasuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.896-901
    • /
    • 1990
  • A simulation analysis is presented for the position control of a single-link flexible manipulator whose end-effector is subjected to an impulsive force. Arm is rotated by a d.c. servomotor at the shoulder so that the end point stays precisely at its initial position even if the end effector is thumped with the impulsive loading. A gap sensor is used to measure the tip displacement. The control torque based on the PD control law is applied to the motor through the driver circuit. The control strategy is tested by means of computer simulation for the one-link flexible-arm prototype in the authers' laboratory at Tohoku Univ.

  • PDF

Linearized Modeling and Variable Position Control of Magnetic Levitator Using DSP (선형화 기법을 사용한 자기부유기 모델링과 DSP기반 가변 위치 제어)

  • 김정재;송승호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.158-162
    • /
    • 2004
  • The magnetic levitator is the device which can float a magnetic material at the midair by electromagnetic force and it's principle can be applied to the high speed magnetic bearing or magnetic levitation train. There are many difficulties to control, because the magnetic levitator is basically a nonlinear and unstable system. In this paper, this system is modeled assuming that it is a linear system nearby an operating point, and a proportional and derivative(PD) position controller is designed to carry out the variable position control. The performance of position control response is shown through simulation and experiment. A prototype magnetic levitator is constructed using PWM converter and DSP(Digital Signal Processor) based control board.

Three-Dimensional Measurement of Moving Surface Using Circular Dynamic Stereo

  • Lee, Man-Hyung;Hong, Suh-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.3-101
    • /
    • 2001
  • By setting a refractor with a certain angle against the optical axis of the CCD camera lens, the image of a measuring point recorded on the image plane is displaced by the corresponding amounts related to the distance between the camera and the measuring point. When the refractor that keeps the angle against the optical axis is rotated physically at high speed during the exposure of the camera, the image of a measuring point draws an annular streak. Since the size of the annular streak is inversely proportional to the distance between the camera and the measuring point, the 3D position of the measuring point can be obtained by processing the streak. In this paper, for one of the applications of our system, the measurement of a moving surface is introduced. In order to measure the moving surface, multi laser spots are projected on the surface of object. Each position of ...

  • PDF

Position Control of a Redundant Flexible Manipulator (여유자유도 유연 매니퓰레이터의 위치제어)

  • 김진수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.83-89
    • /
    • 2001
  • In this paper, we discuss the vibration suppression control of spatial redundant flexible manipulators through pseudo-inversed of Jacobian. In order to verify our method, the experiments are performed for PTP(Point To Point) motion of spa-tial flexible manipulators(1) with no redundancy(2) with one redundant DOF(degree of freedom). Finally, a comparison between these results is presented to show the performance of out approach.

  • PDF

Position Control of the Arago Disk using Fuzzy Techniques (퍼지 기법을 이용한 아라고 원판의 위치 제어)

  • Mun, Sang-Ik;Choe, Gun-Ho;Park, Gi-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.346-353
    • /
    • 2000
  • In this paper, a fuzzy logic controller is designed for position control of an Arage disk. The Arage disk system is an experimental set to exploit Arago's disk phenomenon which is the operation principle of induction motors. Since the Arage disk system operates in stable, maginally stable, and unstable regions, it is suitable as a test system to evaluate efficiency of various control system design methods. It is shown that the fuzzy logic controller shows good responses for multi-operating points of Arage disk system, while the controllers using linearized models are able to control the system on only one operating point.

  • PDF