• Title/Summary/Keyword: Point response function

Search Result 285, Processing Time 0.03 seconds

An improved response surface method for reliability analysis of structures

  • Basaga, Hasan Basri;Bayraktar, Alemdar;Kaymaz, Irfan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.175-189
    • /
    • 2012
  • This paper presents an algorithm for structural reliability with the response surface method. For this aim, an approach with three stages is proposed named as improved response surface method. In the algorithm, firstly, a quadratic approximate function is formed and design point is determined with First Order Reliability Method. Secondly, a point close to the exact limit state function is searched using the design point. Lastly, vector projected method is used to generate the sample points and Second Order Reliability Method is performed to obtain reliability index and probability of failure. Five numerical examples are selected to illustrate the proposed algorithm. The limit state functions of three examples (cantilever beam, highly nonlinear limit state function and dynamic response of an oscillator) are defined explicitly and the others (frame and truss structures) are defined implicitly. ANSYS finite element program is utilized to obtain the response of the structures which are needed in the reliability analysis of implicit limit state functions. The results (reliability index, probability of failure and limit state function evaluations) obtained from the improved response surface are compared with those of Monte Carlo Simulation, First Order Reliability Method, Second Order Reliability Method and Classical Response Surface Method. According to the results, proposed algorithm gives better results for both reliability index and limit state function evaluations.

Analyses of the Cost function for the Reductions of the Dynamic Response and the Vibrational Intensity of a Discrete System and Its Elastic Supporting Beam (이산계와 탄성 지지보의 동응답 및 진동 인텐시티 저감을 위한 목적함수 해석)

  • Kim, Gi-Man;Choi, Seong-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.83-91
    • /
    • 2010
  • In this paper, the feasibility of the cost function having two control factors were discussed in compared to two others which has one different control factor respectively. As of the control factors, the dynamic response of a discrete system and the vibrational intensity at the reference point which is the connecting point of a discrete system to a flexible beam were controlled actively by the control force obtained from the minimization of the cost function. The method of feedforward control was employed for the control strategy. The reduction levels of the dynamic response of a discrete system and the vibrational intensity at a reference point, and also the input power induced by the control force were evaluated numerically in cases of the three different cost functions. In comparison with the results obtained from the cost functions of one control factor, which is the dynamic response or the vibrational intensity, in most cases of the cost function of two control factors the better or similar results were obtained. As a conclusion, it is surely noted that both the dynamic response and the vibrational intensity of the vibrating system be controlled up to the expected level by using the single cost function having two control factors.

A Study on the Confidence Region of the Stationary Point in a second Order Response Surface

  • Jorn, Hong S.
    • Journal of the Korean Statistical Society
    • /
    • v.7 no.2
    • /
    • pp.109-119
    • /
    • 1978
  • When a response surface by a seconde order polynomial regression model, the stationary point is obtained by solving simultaneous linear equations. But the point is a function of random variables. We can find a confidence region for this point as Box and Hunter provided. However, the confidence region is often too large to be useful for the experiments, and it is necessary to augment additional design points in order to obtain a satisfactory confidence region for the stationary point. In this note, the author suggests a method how to augment design points "eficiently", and shows the change of the confidence region of the estimated stationary point in a response surface.e surface.

  • PDF

Analysis of Cournot Model of Electricity Market with Demand Response (수요반응자원이 포함된 전력시장의 쿠르노 경쟁모형 해석)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.16-22
    • /
    • 2017
  • In order to reduce costs of electricity energy at periods of peak demand, there has been an exponential interest in Demand Response (DR). This paper discusses the effect on the participants' behavior in response to DR. Under the assumption of perfect competition, the equilibrium point of the electricity market with DR is derived by modeling a DR curve, which is suitable for microeconomic analysis. Cournot model is used to analyze the electricity market of imperfect competition that includes strategic behavior of the generation companies. Strategic behavior with DR makes it harder to compute equilibrium point due to the non-differential function of payoff distribution. This paper presents a solution method for achieving the equilibrium point using the best response function of the strategic players. The effect of DR on the electricity market is illustrated using a test system.

Capabilities of stochastic response surface method and response surface method in reliability analysis

  • Jiang, Shui-Hua;Li, Dian-Qing;Zhou, Chuang-Bing;Zhang, Li-Min
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.111-128
    • /
    • 2014
  • The stochastic response surface method (SRSM) and the response surface method (RSM) are often used for structural reliability analysis, especially for reliability problems with implicit performance functions. This paper aims to compare these two methods in terms of fitting the performance function, accuracy and efficiency in estimating probability of failure as well as statistical moments of system output response. The computational procedures of two response surface methods are briefly introduced first. Then their capabilities are demonstrated and compared in detail through two examples. The results indicate that the probability of failure mainly reflects the accuracy of the response surface function (RSF) fitting the performance function in the vicinity of the design point, while the statistical moments of system output response reflect the accuracy of the RSF fitting the performance function in the entire space. In addition, the performance function can be well fitted by the SRSM with an optimal order polynomial chaos expansion both in the entire physical and in the independent standard normal spaces. However, it can be only well fitted by the RSM in the vicinity of the design point. For reliability problems involving random variables with approximate normal distributions, such as normal, lognormal, and Gumbel Max distributions, both the probability of failure and statistical moments of system output response can be accurately estimated by the SRSM, whereas the RSM can only produce the probability of failure with a reasonable accuracy.

Aircraft Wing Spar Cross-section Area Optimization with Response Surface Method (반응면 기법을 이용한 항공기 날개 스파 단면적의 최적화 연구)

  • Park, Chan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.109-116
    • /
    • 2002
  • The solution of the aircraft wing spar cross-section area optimization problem is obtained by the response surface method. The object function of the problem is wing total weight, design variables are spar cross-section areas, constraints are the conditions that the stresses at the each spar is less than the allowable stress. D-Optimal condition is utilized to obtain the experimental points to construct the response surfaces. D-Optimal experimental points are obtained by the commercial software "Deign-Expert". Response values for the object function and constraints for each experimental point are calculated by the NASTRAN. Response surfaces for object function and constraints are approximated from the response values by the least square method. The optimization solution is obtained by the DOT for the response surfaces of object function and constraints. The optimization results obtained from the response surface are compared with the results obtained by the NASTRAN SOL200.

A comparative study of three collocation point methods for odd order stochastic response surface method

  • Li, Dian-Qing;Jiang, Shui-Hua;Cheng, Yong-Gang;Zhou, Chuang-Bing
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.595-611
    • /
    • 2013
  • This paper aims to compare three collocation point methods associated with the odd order stochastic response surface method (SRSM) in a systematical and quantitative way. The SRSM with the Hermite polynomial chaos is briefly introduced first. Then, three collocation point methods, namely the point method, the root method and the without origin method underlying the odd order SRSMs are highlighted. Three examples are presented to demonstrate the accuracy and efficiency of the three methods. The results indicate that the condition that the Hermite polynomial information matrix evaluated at the collocation points has a full rank should be satisfied to yield reliability results with a sufficient accuracy. The point method and the without origin method are much more efficient than the root method, especially for the reliability problems involving a large number of random variables or requiring complex finite element analysis. The without origin method can also produce sufficiently accurate reliability results in comparison with the point and root methods. Therefore, the origin often used as a collocation point is not absolutely necessary. The odd order SRSMs with the point method and the without origin method are recommended for the reliability analysis due to their computational accuracy and efficiency. The order of SRSM has a significant influence on the results associated with the three collocation point methods. For normal random variables, the SRSM with an order equaling or exceeding the order of a performance function can produce reliability results with a sufficient accuracy. The order of SRSM should significantly exceed the order of the performance function involving strongly non-normal random variables.

A Diffraction Transfer Function Approach to the Calculation of the Transient Field of Acoustic Radiators

  • Lee, Chan-Kil
    • ETRI Journal
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1994
  • A computationally-efficient approach to the calculation of the transient field of an acoustic radiator was developed. With this approach, a planar or curved source, radiating either continuous or pulsed waves, is divided into a finite number of shifted and/or rotated versions of an incremental source such that the Fraunhofer approximation holds at each field point. The acoustic field from the incremental source is given by a 2-D spatial Fourier transform. The diffraction transfer function of the entire source can be expressed as a sum of Fraunhofer diffraction pattern of the incremental sources with the appropriate coordinate transformations for the particular geometry of the radiator. For a given spectrum of radiator velocity, the transient field can be computed directly in the frequency domain using the diffraction transfer function. To determine the accuracy of the proposed approach, the impulse response was derived using the inverse Fourier transform. The results obtained agree well with published data obtained using the impulse response approach. The computational efficiency of the proposed method compares favorably to those of the point source method and the impulse response approach.

  • PDF

Models of Sexual Response in Humans (인간의 성 반응에 대한 모델)

  • Choi, In Kwang
    • Korean Journal of Biological Psychiatry
    • /
    • v.20 no.3
    • /
    • pp.66-73
    • /
    • 2013
  • Sexual behavior is crucial in life, yet comparatively little is known about the mechanisms in the sexual response in humans. A lot of theories and models have been developed to explain about the process of the sexual response in humans. The first model of sexual function was described by Masters and Johnson, defined the four-phase model (phases of excitation, plateau, orgasm and resolution). Helen Kaplan proposed a slightly different model of human sexual response by adding the conception of the desire phase. Some years later, a new model of circular sexual response pattern was described by Whipple and Brash-McGreer, who acknowledged the cyclic nature of women's sexual response. Basson presented an alternative model of women's normative sexual function, which featured a responsive form of desire in women's sexual response. Bancroft developed a new theoretical model, the Dual Control Model, which postulates sexual response and arousal is ultimately determined by the balance between the sexual activation or excitation system and the sexual inhibition system. The Sexual Tipping Point is a model created by Perelman, suggesting that a sexual response is determined by a balance between excitatory or inhibitory factors that may be psychological, organic, psychosocial, or cultural. A comprehensive understanding of sexual response and function is of paramount importance for the psychiatrist to study sex, offer counseling to the patient on sex, and practice sex therapy. In this literature, models of sexual response would be reviewed to understand the knowledge of the sexual functioning in humans.

Multi-point response spectrum analysis of a historical bridge to blast ground motion

  • Haciefendioglu, Kemal;Banerjee, Swagata;Soyluk, Kurtulus;Koksal, Olgun
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.897-919
    • /
    • 2015
  • In this study, the effects of ground shocks due to explosive loads on the dynamic response of historical masonry bridges are investigated by using the multi-point shock response spectrum method. With this purpose, different charge weights and distances from the charge center are considered for the analyses of a masonry bridge and depending on these parameters frequency-varying shock spectra are determined and applied to each support of the two-span masonry bridge. The net blast induced ground motion consists of air-induced and direct-induced ground motions. Acceleration time histories of blast induced ground motions are obtained depending on a deterministic shape function and a stationary process. Shock response spectrums determined from the ground shock time histories are simulated using BlastGM software. The results obtained from uniform and multi-point response spectrum analyses cases show that significant differences take place between the uniform and multi-point blast-induced ground motions.