• Title/Summary/Keyword: Point load strength

Search Result 449, Processing Time 0.029 seconds

Finite Element Analysis for Wall Thinned Steam Generator Tubes (감육된 증기발생기 전열관의 유한요소 해석)

  • Seong, K.Y.;Ahn, S.H.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.38-44
    • /
    • 2006
  • Failure assessment of steam generator tube are very important for the integrity of energy plants. In pipes of energy plants, sometimes, the local wall thinning may result from severe erosion-corrosion damage. Recently, the effects of local wall thinning on fracture strength and fracture behavior of piping system have been well studied. In this paper, the elasto-plastic analysis is performed by FE code ANSIS on steam generator tube with wall thinning. We evaluated the failure mode, fracture strength and fracture behavior from FE analysis. It was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area.

  • PDF

Analysis of Economic Feasibility and Suitability of Highrise Buildings Using Highstrength Steel (고강도 강재를 활용한 초고층건물의 경제성 및 적합성 분석)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.197-204
    • /
    • 2017
  • This paper aims to analyze the economic feasibility and investigate the possibility of elastic seismic design of wind-designed highrise concentrically braced frames considering change of mechanical properties of Korean steel under the strong wind and the low seismicity in Korea. To this end, first, highrise concentrically braced frames were designed considering strong wind load. And then, analyses of the economics of them were performed. The seismic performance evaluation of wind-designed highrise buildings was conducted using the response spectrum analysis procedure. Analysis results show that it is possible to save up to approximately 90% of the amount of steel on the 10% increase in steel strength without serviceability. However, with serviceability, the design sectional area of the steel with relatively high strength tends to increment considerably because of the lateral stiffness due to reduction of the inertia moment and so on. This point might apply to limitation of the steel with high tensile yield strength.

Structural Strength Assessment of Simplified Mark III CS Plate (단순화된 Mark III 방열판의 구조 강도 평가에 관한 연구)

  • Jeong, Han-Koo;Yang, Young-Soon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.539-543
    • /
    • 2011
  • LNG cargo containment system (CCS) has the primary function of ensuring adequate thermal insulation with keeping natural gas below its boiling point. From the viewpoint of structural design, this LNG CCS can be treated as a laminated composite structure showing complex structural responses under the sloshing load which can be defined as a violent behavior of the liquid contents in cargo tanks due to external forced motions. As LNG CCS type, Mark III containment system from TGZ is considered in this paper and then its structural strength assessment is performed based on a simple higher-order shear deformation theory and maximum stress, maximum strain, Tsai-Wu failure criteria developed for laminated composite plates. The assessment is performed to the initial failure of the Mark III CS plate by investigating failure locations and loads.

  • PDF

Effect of angle stiffeners on the flexural strength and stiffness of cold-formed steel beams

  • Dar, M. Adil;Subramanian, N.;Rather, Amer I.;Dar, A.R.;Lim, James B.P.;Anbarasu, M.;Roy, Krishanu
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.225-243
    • /
    • 2019
  • Cold-formed steel (CFS) sections when used as primary load carrying members often require additional strengthening for retrofitting purposes. In some cases, it is also necessary to reduce deflections in order to satisfy serviceability requirements. The introduction of angle sections, screwed to the webs so as to act as external stiffeners, has the potential to both increase flexural strength as well as reduce deflections. This paper presents the results of ten four-point bending tests, on built-up CFS sections, both open and closed, with different stiffening arrangements. In the laboratory tests, the stiffening arrangements increased the moment capacity and stiffness of the CFS beams by up to 85% and 100% respectively. The increase in moment capacity was more evident for the open sections, while that reduction in deflection was largest for the closed sections.

Safety Evaluation Methods for design of the baseball helmet (야구용 헬멧의 안전성 평가 방법)

  • 최경임
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • In order to protect the head, baseball helmet must to have proper strength and to absorb the kinetic energy. The purposes of this study are to validate whether the helmet have the protecting ability or not. We performed three kinds of experiment to know about the this ability. To find out the limit of displacement at 4 points(front, rear, right side, and left side), the static load by magnetic dial gauges were used, and to validate the ability of absorption, drop tests were peformed from 0.5 and 1.0 meter. Futhermore, we calculated natural frequency of the helmets by the principle of Lissajous Diagram and we performed FEM(Finite Element Method) analysis. From the results of these experiments, we found that the displacement of helmet was largest at rear point and it was smallest at left-side point(ear-covered part). The ability of absorption was better at the left-side point than the other points.

Gear Rating and Contact Pattern Analysis for Rotavator Gearbox Using Actual Working Load (실 작업 부하를 이용한 로타베이터 기어박스의 강도 평가와 치면 접촉 패턴 해석)

  • Kim, Jeong-Gil;Cho, Seung-Je;Lee, Dong-Keun;Oh, Joo-Young;Shin, Min-Seok;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.92-99
    • /
    • 2021
  • The rotavator is attached to the three-point hitch at the rear of a tractor and uses the power take-off strength of the tractor to perform soil harrowing. During operation, the power transmitted to the gearbox of the rotavator varies with the soil characteristics and depth. These properties influence the reliability of the gearbox. In this study, actual load measurements and analyses were performed using a rotavator. In addition, the safety factor and fatigue life of the gearbox components were determined using the analysis results. Through analysis and tests, the contact pattern of the gear tooth surface was identified. The input power values of the gearbox were minimum and maximum at 54.5% and 84.5% of the tractor power, respectively. Based on the actual load analysis results, the strength and fatigue life of the gearbox components were satisfied. In addition, through the analysis and testing of the gear contact pattern, it was confirmed that a similar contact occurred. Through the analysis, the magnitude of the load acting on the tooth surface of the gear was confirmed.

Residual Strength of Fiber Metal Laminates After Impact (충격손상을 받은 섬유 금속 적층판의 잔류 강도 연구)

  • Nam, Hyun-Wook;Lee, Young-Tae;Jung, Chang-Kyu;Han, Kyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.440-449
    • /
    • 2003
  • Residual strength of fiber metal laminates after impact was studied. 3/4 lay up FML was fabricated using 4 ply prepreg, 2 ply aluminum sheets, and 1 ply steel sheet. Quasi isotropic ([0/45/90/-45]s) and orthotropic ([0/90/0/90]s) FRP were also fabricated to compare with FML. Impact test were conducted by using instrumented drop weight impact machine (Dynatup, Model 8250). Penetration load and absorbed energy of FML were superior to those of FRPs. Tensile tests were conducted to evaluate the residual strength after impact. Strength degradation of FML was less than that of FRP. This means that the damage tolerance of FML is excellent than that of FRP. Residual strength of each specimen was predicted by using Whitney and Nuismer(WN) Model. Impact damage area is assumed as a circular notch in WN model. Damage width is defined as the average of back face and top face damage width of each specimen. Average stress and point stress criterions were used to calculate the characteristic length. It is supposing that a characteristic length is a constant. The distribution of characteristic length shows that the assumption is reasonable. Prediction was well matched with experiment under both stress criterions.

Design and behaviour of double skin composite beams with novel enhanced C-channels

  • Yan, Jia-Bao;Guan, Huining;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.517-532
    • /
    • 2020
  • This paper firstly developed a new type of Double Skin Composite (DSC) beams using novel enhanced C-channels (ECs). The shear behaviour of novel ECs was firstly studied through two push-out tests. Eleven full-scale DSC beams with ECs (DSCB-ECs) were tested under four-point loading to study their ultimate strength behaviours, and the studied parameters were thickness of steel faceplate, spacing of ECs, shear span, and strength of concrete core. Test results showed that all the DSCB-ECs failed in flexure-governed mode, which confirmed the effective bonding of ECs. The working mechanisms of DSCB-ECs with different parameters were reported, analysed and discussed. The load-deflection (or strain) behaviour of DSCB-ECs were also detailed reported. The effects of studied parameters on ultimate strength behaviour of DSCB-ECs have been discussed and analysed. Including the experimental studies, this paper also developed theoretical models to predict the initial stiffness, elastic stiffness, cracking, yielding, and ultimate loads of DSCB-ECs. Validations of predictions against 11 test results proved the reasonable estimations of the developed theoretical models on those stiffness and strength indexes. Finally, conclusions were given based on these tests and analysis.

Joint Stability and lateral behavior of composite piles (복합말뚝 연결부 안정성 평가 및 수평거동특성 분석)

  • Shin, Yun-Sup;Park, Jae-Hyun;Hwang, Ui-Seong;Cho, Sung-Han;Chung, Moon-Kyung;Boo, Kyo-Tag
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.553-558
    • /
    • 2010
  • The behavior of composite piles composed of steel pipe pile in the upper part and concrete pile in the lower part by a mechanical splicing joint was examined by field lateral load tests and bending tests. A total of 7 piles including two instrumented piles for bending test were installed. The soil profile consists of soft clay with weak silt with shallow groundwater level. Laboratory tests were carried out to determine the basic soil characteristics and the strength parameters. This paper presents the composite pile behavior with various portions of the upper steel pile: 0, 20, 30, and 45% of the pile embedded pile length. Three-point bending tests were performed to investigate the stress-strain relation at the mechanical joint. Based on these test results, the behavior of composite piles with various upper steel pile length are evaluated and the stability of mechanical joints are examined. Through comparisons with results of field load tests, it was found that lateral load carrying capacity of the composite piles increased and deflections of the composite piles decreased with increasing the upper steel piles. The mechanical joint was proved to retain its structural stability against the tested load conditions. Economical benefits of composite pile of this kind can be gained by setting adequately the length of the upper steel pipe piles.

  • PDF

An Experimental Study on the Fracture Safety of Reinforced Concrete Structures (철근콘크리트 구조물의 파괴 안전성에 관한 실험적 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.127-133
    • /
    • 1994
  • In this thesis, the fracture tests were performed on a series of reinforced concrete to investigate the variation of strength and the fracture safety of reinforced concrete structures. The specimens were of the same rectangular cross-section, of effective height 24cm and width 30cm and their span was 330cm. The three point loading system is used in the fracture tests. In these tests, the yield load, the ultimate load, the flexural strain and the mid-span displacement were detected. According to the results of these tests, the fracture behavior of reinforced concrete structures can be summarized as the follows : There Is no difference between the singly and doubly reinforced rectangular beams before the yield load. But from the yield load up to the ultimate load, the mid-span displacement of the singly reinforced rectangular beams are about two times larger than those of the doubly reinforced rectangular beams, The fracture energy of the doubly reinforced rectangular beams are one and half times compared to that of the singly reinforced rectangular beams. Based on the above investigation, it could be concluded that the doubly reinforced rectangular beam is more efficient to resist the brittle fracture than the singly reinforced rectangular beam.

  • PDF