• 제목/요약/키워드: Point frequency analysis

검색결과 1,178건 처리시간 0.032초

춘천의 안개발생과 관련된 기상특성분석 및 수치모의 (Analysis of Meteorological Features and Prediction Probability Associated with the Fog Occurrence at Chuncheon)

  • 이화운;이귀옥;백승주;김동혁
    • 한국대기환경학회지
    • /
    • 제21권3호
    • /
    • pp.303-313
    • /
    • 2005
  • In this study, meteorological characteristics concerning the occurrence of fog are analyzed using 4-years $(2000\~2003)$ data at Chuncheon and the probability of prediction is investigated. From the analysis of meteorological characteristics, the fog at Chuncheon occurred before sunrise time and disappeared after that time and lasted for $2\~4$ hours. When fog occurred, on the whole, wind direction was blew the northerly and wind speed was below 2.1m/s. Especially, about $42\%$ of foggy day fell on the calm $(0\~0.2\;ms^{-1})$ conditions. The difference between air temperature and dew point temperature near the surface were mainly less than $2^{\circ}C$. For the lack of water surface temperature, the water surface temperature was calculated by using Water Quality River Reservoir System (WQRRS) and then it was used as the surface boundary condition of MM5. The numerical experiment was carried out for 2 days from 1300 LST on 14 October 2003 to 1300 LST on 16 October 2003 and fog was simulated at dawn on 15 and 16 October 2003. Simulated air temperature and dew point temperature indicate the similar tendency to observation and the simulated difference between air temperature and dew point temperature has also the similar tendency within $2^{\circ}C$. Thus, the occurrence of fog is well simulated in the terms of the difference between air temperature and dew point temperature. Horizontal distribution of the difference between air temperature and dew point temperature from the numerical experiment indicates occurrence, dissipation and lasting time of fog at Chuncheon. In Chuncheon, there is close correlation between the frequency of fog day and outflow from Soyang reservoir and high frequency of occurrence due to the difference between air and cold outlet water temperature.

Subsection Synchronous Current Harmonic Minimum Pulse Width Modulation for ANPC-5L Inverter

  • Feng, Jiuyi;Song, Wenxiang;Xu, Yuan;Wang, Fei
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1872-1882
    • /
    • 2017
  • Medium voltage drive systems driven by high-power multi-level inverters operating at low switching frequency can reduce the switching losses of the power device and increase the output power. Employing subsection synchronous current harmonic minimum pulse width modulation (CHMPWM) technique can maintain the total harmonic distortion of current at a very low level. It can also reduce the losses of the system, improve the system control performance and increase the efficiency of DC-link voltage accordingly. This paper proposes a subsection synchronous CHMPWM approach of active neutral point clamped five-level (ANPC-5L) inverter under low switching frequency operation. The subsection synchronous scheme is obtained by theoretical calculation based on the allowed maximum switching frequency. The genetic algorithm (GA) is adopted to get the high-precision initial values. So the expected switching angles can be achieved with the help of sequential quadratic programming (SQP) algorithm. The selection principle of multiple sets of the switching angles is also presented. Finally, the validity of the theoretical analysis and the superiority of the CHMPWM are verified through both the simulation results and experimental results.

Characterizing and modelling nonstationary tri-directional thunderstorm wind time histories

  • Y.X. Liu;H.P. Hong
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.277-293
    • /
    • 2024
  • The recorded thunderstorm winds at a point contain tri-directional components. The probabilistic characteristics of such recorded winds in terms of instantaneous mean wind speed and direction, and the probability distribution and the time-frequency dependent crossed and non-crossed power spectral density functions for the high-frequency fluctuating wind components are unclear. In the present study, we analyze the recorded tri-directional thunderstorm wind components by separating the recorded winds in terms of low-frequency time-varying mean wind speed and high-frequency fluctuating wind components in the alongwind direction and two orthogonal crosswind directions. We determine the time-varying mean wind speed and direction defined by azimuth and elevation angles, and analyze the spectra of high-frequency wind components in three orthogonal directions using continuous wavelet transforms. Additionally, we evaluate the coherence between each pair of fluctuating winds. Based on the analysis results, we develop empirical spectral models and lagged coherence models for the tri-directional fluctuating wind components, and we indicate that the fluctuating wind components can be treated as Gaussian. We show how they can be used to generate time histories of the tri-directional thunderstorm winds.

도시유역의 빈도 관계곡선 유도 (Derivation of Frequency Relationship Curve in Urban Watershed)

  • 서주석;박만교;우승식;이태우;정찬욱;이종석
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2008년도 춘계 종합학술대회 논문집
    • /
    • pp.285-288
    • /
    • 2008
  • 본 연구는 도시유역에서 강수계측망 밀도에 따른 빈도해석으로부터 관계곡선을 유도하여 최적 설계홍수량을 추적하고자 한다. 이를 위한 해석에는 도시전체를 한 개의 유역으로 하는 저밀도망과 13개 소구역으로 분할한 고밀도망에서 실측된 각기 다른 강우사상이 적용되었다. 저밀도망에는 39년간의 기상청 자료를 사용하였고, 고밀도망에는 6년간의 지자체 자료를 연초과치 계열로 확대하여 구성하였다. 그 결과 저밀도망은 지속기간 1시간에서 79.1mm, 24시간에서 329.1mm, 고밀도망은 93.0mm, 245.0mm가 각각 최대값으로 나타났으며, 빈도 관계곡선을 유도하기 위한 주요 6개 확률 분포형의 해석에서는 Gumbel 분포가 가장 적합한 것으로 나타났다.

  • PDF

성인여성의 의복 원형 개발에 관한 연구 -성인여성의 체형 분류에 관한 연구의 후속 연구- (The Study of Classification Body Types of Adults Women and Drawing of Prototype of Clothing)

  • 손혜순;손혜정
    • 복식문화연구
    • /
    • 제5권4호
    • /
    • pp.130-158
    • /
    • 1997
  • This study outputs calculation of regression of each items for production of torso basic pattern according to 6 body types as the result of another study and intends to present drawing method of torso model by short measure method modified and supplied and supplied by experiments of wearing clothing. SAS(Statistical Analysis System) is used for figures management and methods for analysis used are Frequency Analysis, Means Analysis, Regression Analysis, Correlation Analysis, etc. Results are as follows. 1. Correlation analysis is used to output the size necessary for torso prototype drawing by sort measure method and waist front length, back length, crotch length, shoulder point-cerricale-shoulder point, bust circumference, waist circumference, weight, etc, are set up as representative items calculation of regression of each type is suggested. 2. In the result of experiment of the first wearing clothing intended for 5 in each type and the whole 30, to develop torso prototype drawing method by short measure method, as we find some problems of the shape and propriety of neck root circumference line, the position of shoulder point, pulling or hold armpit parts, waist circumference line, the degree of dissatisfaction is high, so the second experiment of wearing clothing is propriety of each part is improved, all items except the length and quantity of shoulder dart, waist in back bodice, clearance quantity of hip circumference, and the place of shoulder line in side bodice. So, it was modifed and supplied and then the third torso prototyped drawing method by shout measure method was suggested. The third prototype drawing method was suggested, by modifying and supplying.

  • PDF

Detection of Leakage Point via Frequency Analysis of a Pipeline Flow

  • Kim, Sanghyun;Wansuk Yoo;Injoon Kang
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.232-238
    • /
    • 2001
  • Fast Fourier Transformation is employed to convert the head variation of a pipeline in the time domain to the amplitude of the frequency domain. Applying method of characteristics to a pipeline provides a significant frequency range for a surge introduced from the valve modulation. Inverse Fast Fourier Transformation and a Finite Impulse Response Filter can be used to remove any possible noise existing from the significant frequency range of an unsteady condition. A filtered signal shows higher potential for the inverse calculation of leakage detection than the noise-added signal does. The respective performances of Inverse Fast Fourier Transformation and a Finite Impulse Response Filter are compared in terms of leakage detection capability. Characteristics of the frequency range for multiple leakages were investigated to validate the effectiveness of the noise control method in the frequency domain.

  • PDF

비선형 내점법을 이용한 전력계통 평형점 최적화 (EOPT) (Power System Equilibrium Optimization (EOPT) with a Nonlinear Interior Point Method)

  • 송화창;호세 로델 도사노
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.8-9
    • /
    • 2006
  • This paper presents a new methodology to calculate an optimal solution of equilibrium to power system differential algebraic equations. It employs a nonlinear interior point method for solving the optimization formulation, which includes dynamic equations representing two-axis synchronous generator models with AVR and speed governing control, algebraic equations, and steady-state nonlinear loads. Equilibrium optimization (EOPT) is useful for diverse purposes in power system analysis and control with consideration of the system frequency constraint.

  • PDF

정보화사회의 소비자문제와 교육방안(I) 정보화와 관련된 소비자문제 인식과 영향요인 연구 (Consumer Problems and Consumer Education Plan in Informationized Society(I) The recognition of consumer problems and related variables in infromationized society)

  • 이기춘;박수경
    • 대한가정학회지
    • /
    • 제37권8호
    • /
    • pp.55-72
    • /
    • 1999
  • The purpose of this study is to identify the levels of informationized life of individual, consumers knowledge and attitudes to informationized society, and the recognition of consumer problems in informationized society, and to investigate the related variables. Data were collected from 693.consumers living in Seoul using the constructed questionnaires by the authors. Frequency, Percentage and Multiple Regression Analysis were applied for the analysis. The level of informationized life of consumers was lower than the mid-point of the scale, the level of the consumers knowledge about informationized society was sightly higher than mid-point of the scale, and the consumer attitudes to informationized society appeared to be positive. The level of the recognition of consumer problems in informationized society was higher than the mid-point of the scale,and was influenced by job, age of consumers, and the level of consumers knowledge about informationized society.

  • PDF

구조물 진동.소음의 수치해석시 최적 요소크기는 .lambda./4이다. (Optimum mesh size of the numerical analysis for structural vibration and noise prediction)

  • 김정태;강준수
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1950-1956
    • /
    • 1997
  • An engineering goal in vibration and noise professionals is to develope quiet machines at the preliminary design stage, and various numerical techniques such as FEM, SEA or BEM are one of the schemes toward the goal. In this paper, the research has been focused on the sensitivity effect of mesh sizes for FEM application so that the optimum size of the mesh that leads to engineering solution within acceptable computing time could be generated. In order to evaluate the mesh size effect, three important parameters have been examined : natural frequencies, number of modes and driving point mobility. First, several lower modes including the fundamental frequency of a 2-D plate structure have been calculated as mesh size changes. Since theoretical values of natural frequencies for a simple structure are known, the deviation between the numerical and theoretical values is obtained as a function of mesh size. The result shows that the error is no longer decreased if the mesh size becomes a quarter wavelength or smaller than that. Second, the mesh size effect is also investigated for the number of modes. For the frequency band up to 1.4 kHz, the structure should have 38 modes in total. As the mesh size reaches to the quarter wavelength, the total count in modes approaches to the same values. Third, a mobility function at the driving point is compared between SEA and FEM result. In SEA application, the mobility function is determined by the modal density and the mass of the structure. It is independent of excitation frequencies. When the mobility function is calculated from a wavelength to one-tenth of it, the mobility becomes constant if the mesh becomes a quarter wavelength or smaller. We can conclude that dynamic parameters, such as eigenvalues, mode count, and mobility function, can be correctly estimated, while saving the computing burden, if a quarter wavelength (.lambda./4) mesh is used. Therefore, (.lambda./4) mesh is recommended in structural vibration analysis.

Development of a Criterion for Efficient Numerical Calculation of Structural Vibration Responses

  • Kim, Woonkyung M.;Kim, Jeung-Tae;Kim, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1148-1155
    • /
    • 2003
  • The finite element method is one of the methods widely applied for predicting vibration in mechanical structures. In this paper, the effect of the mesh size of the finite element model on the accuracy of the numerical solutions of the structural vibration problems is investigated with particular focus on obtaining the optimal mesh size with respect to the solution accuracy and computational cost. The vibration response parameters of the natural frequency, modal density, and driving point mobility are discussed. For accurate driving point mobility calculation, the decay method is employed to experimentally determine the internal damping. A uniform plate simply supported at four corners is examined in detail, in which the response parameters are calculated by constructing finite element models with different mesh sizes. The accuracy of the finite element solutions of these parameters is evaluated by comparing with the analytical results as well as estimations based on the statistical energy analysis, or if not available, by testing the numerical convergence. As the mesh size becomes smaller than one quarter of the wavelength of the highest frequency of interest, the solution accuracy improvement is found to be negligible, while the computational cost rapidly increases. For mechanical structures, the finite element analysis with the mesh size of the order of quarter wavelength, combined with the use of the decay method for obtaining internal damping, is found to provide satisfactory predictions for vibration responses.