• 제목/요약/키워드: Point Multiplication

검색결과 157건 처리시간 0.03초

초등수학에 대향 예비교사들의 이해: 분수의 곱셈을 중심으로 (Preservice Teachers' Understanding about Elementary Mathematics: Focused on Multiplication with Fractions)

  • 오영열
    • 대한수학교육학회지:학교수학
    • /
    • 제6권3호
    • /
    • pp.267-281
    • /
    • 2004
  • 본 연구는 초등예비교사들이 초등수학에 대한 전문성을 기르는데 필수적인 요인으로써 초등수학에 대한 이들의 이해도를 알아보는데 그 목적이 있다. 이를 위해서 분수의 곱셈에 대한 계산, 의미 파악, 문제 상황 제시 및 표상의 측면에서 현재 교육대학교 3학년 학생들을 대상으로 본 연구를 실시하였다. 본 연구의 결과 대다수의 초등예비교사들은 분수의 곱셈에 대한 계산에는 거의 어려움이 없었으나, 의미파악과 문제 상황 제시에 있어서는 동수누가의 원리가 적용되는 경우를 제외하고는 상당한 어려움을 느끼고 있었다. 마찬가지로, 분수의 곱셈을 그림을 이용하여 표현하는데 있어서도 대다수의 경우 동수누가의 원리가 직접적으로 적용될 수 있는 경우인 승수가 자연수인 경우를 제외하고는 적절한 방식으로 표현하는데 큰 어려움을 겪고 있는 것으로 드러났다. 본 연구는 진정한 교직의 전문성은 수업에 대한 전문성에서 비롯되며, 이는 초등예비교사들이 초등수학에 대한 전문성을 확보할 때 비로소 수업관행의 근본적인 변화를 이룰 수 있다는 것을 시사한다. 따라서 교실에서의 수학 수업의 질적 향상을 위해서는 초등수학에 대한 깊이 있는 이해가 선행되어야 한다.

  • PDF

224-비트 소수체 타원곡선을 지원하는 공개키 암호 프로세서의 저면적 구현 (A small-area implementation of public-key cryptographic processor for 224-bit elliptic curves over prime field)

  • 박병관;신경욱
    • 한국정보통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1083-1091
    • /
    • 2017
  • NIST 표준에 정의된 소수체(prime field) GF(p) 상의 224-비트 타원곡선을 지원하는 타원곡선 암호 프로세서를 설계하였다. 타원곡선 암호의 핵심 연산인 스칼라 점 곱셈을 수정형 Montgomery ladder 알고리듬을 이용하여 구현하였다. 점 덧셈과 점 두배 연산은 투영(projective) 좌표계를 이용하여 연산량이 많은 나눗셈 연산을 제거하였으며, 소수체 상의 덧셈, 뺄셈, 곱셈, 제곱 연산만으로 구현하였다. 스칼라 점 곱셈의 최종 결과값은 다시 아핀(affine) 좌표계로 변환되어 출력하며, 이때 사용되는 역원 연산은 Fermat's little theorem을 이용하여 구현하였다. 설계된 ECC 프로세서를 Virtex5 FPGA로 구현하여 정상 동작함을 확인하였다. $0.18{\mu}m$공정의 CMOS 셀 라이브러리로 합성한 결과 10 MHz의 동작 주파수에서 2.7-Kbit RAM과 27,739 GE로 구현되었고, 최대 71 MHz의 동작 주파수를 갖는다. 스칼라 점 곱셈에 1,326,985 클록 사이클이 소요되며, 최대 동작 주파수에서 18.7 msec의 시간이 소요된다.

이진 에드워즈 곡선 암호를 위한 점 스칼라 곱셈기 설계 (A Design of Point Scalar Multiplier for Binary Edwards Curves Cryptography)

  • 김민주;정영수;신경욱
    • 한국정보통신학회논문지
    • /
    • 제26권8호
    • /
    • pp.1172-1179
    • /
    • 2022
  • 이진 에드워즈 곡선 (Binary Edwards Curves; BEdC) 기반의 공개키 암호 시스템을 위한 점 스칼라 곱셈기 설계에 대해 기술한다. BEdC 상의 점 덧셈 (Point Addition; PA)과 점 두배 (Point Doubling; PD) 연산의 효율적인 구현을 위해 유한체 연산에 투영 좌표계를 적용하였으며, 이에 의해 점 스칼라 곱셈 (Point Scalar Multiplication; PSM)에 단지 1회의 유한체 역원 연산만 포함되어 연산성능이 향상되었다. 하드웨어 설계에 최적화를 적용하여 PA와 PD의 유한체 연산을 위한 저장 공간과 연산 단계를 약 40% 감소시켰다. BEdC를 위한 점 스칼라 곱셈기를 두 가지 유형으로 설계했으며, Type-I은 257-b×257-b 이진 곱셈기 1개를 사용하고, Type-II는 32-b×32-b 이진 곱셈기 8개를 사용한다. Type-II 설계는 Type-I 구조에 비해 LUT를 65% 적게 사용하나, 240 MHz로 동작할 때 약 3.5배의 PSM 연산시간이 소요되는 것으로 평가되었다. 따라서 Type-I의 BEdC 크립토 코어는 고성능이 필요한 경우에 적합하고, Type-II 구조는 저면적이 필요한 분야에 적합하다.

An area-efficient 256-point FFT design for WiMAX systems

  • Yu, Jian;Cho, Kyung-Ju
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.270-276
    • /
    • 2018
  • This paper presents a low area 256-point pipelined FFT architecture, especially for IEEE 802.16a WiMAX systems. Radix-24 algorithm and single-path delay feedback (SDF) architecture are adopted in the design to reduce the complexity of twiddle factor multiplication. A new cascade canonical signed digit (CSD) complex multipliers are proposed for twiddle factor multiplication, which has lower area and less power consumption than conventional complex multipliers composed of 4 multipliers and 2 adders. Also, the proposed cascade CSD multipliers can remove look-up table for storing coefficient of twiddle factors. In hardware implementation with Cyclone 10LP FPGA, it is shown that the proposed FFT design method achieves about 62% reduction in gate count and 64% memory reduction compared with the previous schemes.

부호화 해밍 웨이트를 이용한 가변 타원곡선 암호시스템의 안전성 향상 (Enhanced Security of Flexible Elliptic Curve Cryptosystems using Signed Hamming Weights)

  • Lee, Mun-Kyu
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권10호
    • /
    • pp.588-592
    • /
    • 2004
  • 스칼라 곱셈은 정수 $textsc{k}$와 타원곡선 상의 한 점 P가 주어졌을 때 $textsc{k}$P를 계산하는 연산이다. 스칼라 곱셈을 빠르게 하기 위한 일반적인 방법으로 Agnew Mullin, Vanstone은 고정된 값의 해밍 웨이트를 갖는 스칼라 $textsc{k}$를 이용하는 방법을 제안하였다. 본 논문에서는 고정된 값의 부호화 해밍 웨이트를 갖는 $textsc{k}$를 이용하는 방법을 제안하고, 이 방법이 더 안전함을 보인다.

SOME PROPERTIES OF INVARIANT SUBSPACES IN BANACH SPACES OF ANALYTIC FUNCTIONS

  • Hedayatian, K.;Robati, B. Khani
    • 호남수학학술지
    • /
    • 제29권4호
    • /
    • pp.523-533
    • /
    • 2007
  • Let $\cal{B}$ be a reflexive Banach space of functions analytic on the open unit disc and M be an invariant subspace of the multiplication operator by the independent variable, $M_z$. Suppose that $\varphi\;\in\;\cal{H}^{\infty}$ and $M_{\varphi}$ : M ${\rightarrow}$ M, defined by $M_{\varphi}f={\varphi}f$, is the operator of multiplication by ${\varphi}$. We would like to investigate the spectrum and the essential spectrum of $M_{\varphi}$ and we are looking for the necessary and sufficient conditions for $M_{\varphi}$ to be a Fredholm operator. Also we give a sufficient condition for a sequence $\{w_n\}$ to be an interpolating sequence for $\cal{B}$. At last the commutant of $M_{\varphi}$ under certain conditions on M and ${\varphi}$ is determined.

The first application of modified neutron source multiplication method in subcriticality monitoring based on Monte Carlo

  • Wang, Wencong;Liu, Caixue;Huang, Liyuan
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.477-484
    • /
    • 2020
  • The control rod drive mechanism needs to be debugged after reactor fresh fuel loading. It is of great importance to monitor the subcriticality of this process accurately. A modified method was applied to the subcriticality monitoring process, in which only a single control rod cluster was fully withdrawn from the core. In order to correct the error in the results obtained by Neutron Source Multiplication Method, which is based on one point reactor model, Monte Carlo neutron transport code was employed to calculate the fission neutron distribution, the iterated fission probability and the neutron flux in the neutron detector. This article analyzed the effect of a coarse mesh and a fine mesh to tally fission neutron distributions, the iterated fission probability distributions and to calculate correction factors. The subcriticality before and after modification is compared with the subcriticality calculated by MCNP code. The modified results turn out to be closer to calculation. It's feasible to implement the modified NSM method in large local reactivity addition process using Monte Carlo code based on 3D model.

ON THE COMMUTANT OF MULTIPLICATION OPERATORS WITH ANALYTIC POLYNOMIAL SYMBOLS

  • Robati, B. Khani
    • 대한수학회보
    • /
    • 제44권4호
    • /
    • pp.683-689
    • /
    • 2007
  • Let $\mathcal{B}$ be a certain Banach space consisting of analytic functions defined on a bounded domain G in the complex plane. Let ${\varphi}$ be an analytic polynomial or a rational function and let $M_{\varphi}$ denote the operator of multiplication by ${\varphi}$. Under certain condition on ${\varphi}$ and G, we characterize the commutant of $M_{\varphi}$ that is the set of all bounded operators T such that $TM_{\varphi}=M_{\varphi}T$. We show that $T=M_{\Psi}$, for some function ${\Psi}$ in $\mathcal{B}$.

A low-cost compensated approximate multiplier for Bfloat16 data processing on convolutional neural network inference

  • Kim, HyunJin
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.684-693
    • /
    • 2021
  • This paper presents a low-cost two-stage approximate multiplier for bfloat16 (brain floating-point) data processing. For cost-efficient approximate multiplication, the first stage implements Mitchell's algorithm that performs the approximate multiplication using only two adders. The second stage adopts the exact multiplication to compensate for the error from the first stage by multiplying error terms and adding its truncated result to the final output. In our design, the low-cost multiplications in both stages can reduce hardware costs significantly and provide low relative errors by compensating for the error from the first stage. We apply our approximate multiplier to the convolutional neural network (CNN) inferences, which shows small accuracy drops with well-known pre-trained models for the ImageNet database. Therefore, our design allows low-cost CNN inference systems with high test accuracy.

단순 전력분석 공격에 대처하는 타원곡선 암호프로세서의 하드웨어 설계 (Hardware Design of Elliptic Curve processor Resistant against Simple Power Analysis Attack)

  • 최병윤
    • 한국정보통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.143-152
    • /
    • 2012
  • 본 논문은 스칼라 곱셈, Menezes-Vanstone 타원곡선 암호 및 복호 알고리즘, 점-덧셈, 점-2배 연산, 유한체상 곱셈, 나눗셈 등의 7가지 동작을 수행하는 GF($2^{191}$) 타원곡선 암호프로세서를 하드웨어로 설계하였다. 단순 전력 분석에 대비하기 위해 타원곡선 암호프로세서는 주된 반복 동작이 키 값에 무관하게 동일한 연산 동작으로 구성되는 몽고메리 스칼라 곱셈 기법을 사용하며, GF($2^m$)의 유한체에서 각각 1, (m/8), (m-1)개의 고정된 사이클에 완료되는 GF-ALU, GF-MUL, GF-DIV 연산장치가 병렬적으로 수행되는 동작 특성을 갖는다. 설계된 프로세서는 0.35um CMOS 공정에서 약 68,000개의 게이트로 구성되며, 시뮬레이션을 통한 최악 지연시간은 7.8 ns로 약 125 MHz의 동작속도를 갖는다. 설계된 프로세서는 320 kps의 암호율, 640 kbps을 복호율 갖고 7개의 유한체 연산을 지원하므로 다양한 암호와 통신 분야에 적용할 수 있다.