• Title/Summary/Keyword: Point Machine

Search Result 1,145, Processing Time 0.033 seconds

A Motor Position Detecting Method Using Algorithmic State Machine(ASM) (ASM을 이용한 전동기의 위치 검출 방법)

  • 김지원;전영환;전진홍;전정우;강도현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.11-17
    • /
    • 2002
  • This paper describes on a position detection method for the motors which have repetitive operations using the Algorithmic State Machine(ASM), one of the digital logic design methods. With analyses for the incremental encoder output patterns, state diagram and state table are constructed and a digital circuit which can detect the changing point of direction of motor rotation is designed. To verify the validity of the designed circuit, simulations for all cases in which the direction of motor rotation is changed, are performed. Simulation results show the designed digital circuit can detect the direction of motor rotation accurately for all cases.

Performance Investigation of Rotary Discharge Machine by Analytical Method (해석적 방법을 통한 Rotary Discharge Machine 의 성능 분석)

  • Jeong, Yeon Ho;Jung, Dae Man;Lee, Kwon Jae;Cho, Young Tae;Jung, Yoon Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.965-970
    • /
    • 2016
  • Fuel used in the steel metallurgy industry is stored in huge stage systems called SILO. Fuel is released by RDM (Rotary Discharge Machine), at the place of utilization. RDM is located in the Silo, and is constituted of a main frame, driving part, discharging part and control part. RDM is combined to a direct motion on the rail in tunnel, having a rotary motion enabled by a motor. In this paper, we calculate the theoretical discharging capacity of RDM to confirm the correlation between design element and discharging capacity of RDM. Also, through structure analysis, we confirm the vulnerable point of RDM when it discharges the storage materials. We hope to apply these results to design a more efficient RDM.

Protecting Technique for the Executable File of Virtual Machines (가상기계 실행파일을 위한 보호 기법)

  • Park, Ji-Woo;Yi, Chang-Hwan;Oh, Se-Man
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.5
    • /
    • pp.668-678
    • /
    • 2007
  • The development of a wire and wireless communication technologies might permit easily accessing on various information. But, the easiness of accessing information has basically the problem of an unintended information outflow. An executable file which has key algorithms, data and resources for itself has very weak point in the security. Because the various information such as algorithms, data and resources is included in an executable file on embedded systems or virtual machines, the information outflow problem may appear more seriously. In this paper, we propose a technique which can be protecting the executable file contents for resolving the outflow problem through the encryption. Experimentally, we applied the proposed technique to EVM-the virtual machine for embedded system and verified it. Also, we tried a benchmark test for the proposed technique and obtained reasonable performance overhead.

  • PDF

Collision Avoidance Sensor System for Mobile Crane (전지형 크레인의 인양물 충돌방지를 위한 환경탐지 센서 시스템 개발)

  • Kim, Ji-Chul;Kim, Young Jea;Kim, Mingeuk;Lee, Hanmin
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2022
  • Construction machinery is exposed to accidents such as collisions, narrowness, and overturns during operation. In particular, mobile crane is operated only with the driver's vision and limited information of the assistant worker. Thus, there is a high risk of an accident. Recently, some collision avoidance device using sensors such as cameras and LiDAR have been applied. However, they are still insufficient to prevent collisions in the omnidirectional 3D space. In this study, a rotating LiDAR device was developed and applied to a 250-ton crane to obtain a full-space point cloud. An algorithm that could provide distance information and safety status to the driver was developed. Also, deep-learning segmentation algorithm was used to classify human-worker. The developed device could recognize obstacles within 100m of a 360-degree range. In the experiment, a safety distance was calculated with an error of 10.3cm at 30m to give the operator an accurate distance and collision alarm.

Development of Material Deformation Measurement System using Machine Vision (머신 비전을 활용한 재료 변형 측정 기술 개발)

  • E. B. Mok;W. J. Chung;C. W. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.20-27
    • /
    • 2023
  • In this study, the deformation of materials was measured using the video and tracking API of OpenCV. Circular markers attached to the material were selected the region of interests (ROIs). The position of the marker was measured from the area center of the circular marker. The position and displacement of the center point was measured along the image frames. For the verification, tensile tests were conducted. In the tensile test, four circular markers were attached along the longitudinal and transverse directions. The strain was calculated using the distance between markers both in the longitudinal and transverse direction. As a result, the stress-strain curve obtained using machine vision is compared to the stress-strain curve obtained from the DIC results. RMSE values of the strain from the machine vision and DIC were less than 0.005. In addition, as a measurement example, a bending angle and springback measurement according to bending deformation, and a moving position measurement of a punch, a blank holder, and a die by time change were performed. Using the proposed method, the deformation and displacement of the materials were measured precisely and easily.

A Statistical Correction of Point Time Series Data of the NCAM-LAMP Medium-range Prediction System Using Support Vector Machine (서포트 벡터 머신을 이용한 NCAM-LAMP 고해상도 중기예측시스템 지점 시계열 자료의 통계적 보정)

  • Kwon, Su-Young;Lee, Seung-Jae;Kim, Man-Il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.415-423
    • /
    • 2021
  • Recently, an R-based point time series data validation system has been established for the statistical post processing and improvement of the National Center for AgroMeteorology-Land Atmosphere Modeling Package (NCAM-LAMP) medium-range prediction data. The time series verification system was used to compare the NCAM-LAMP with the AWS observations and GDAPS medium-range prediction model data operated by Korea Meteorological Administration. For this comparison, the model latitude and longitude data closest to the observation station were extracted and a total of nine points were selected. For each point, the characteristics of the model prediction error were obtained by comparing the daily average of the previous prediction data of air temperature, wind speed, and hourly precipitation, and then we tried to improve the next prediction data using Support Vector Machine( SVM) method. For three months from August to October 2017, the SVM method was used to calibrate the predicted time series data for each run. It was found that The SVM-based correction was promising and encouraging for wind speed and precipitation variables than for temperature variable. The correction effect was small in August but considerably increased in September and October. These results indicate that the SVM method can contribute to mitigate the gradual degradation of medium-range predictability as the model boundary data flows into the model interior.

Characterization of the dynamic behavior of a linear guideway mechanism

  • Chang, Jyh-Cheng;Wu, Shih-Shyn James;Hung, Jui-Pin
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.1-20
    • /
    • 2007
  • Dynamic behaviors of the contact surface between ball and raceway in a guideway mechanism vary with the applied loads and hence affect the mechanical responses of machine tools. The study aims to investigate the nonlinear characteristics of dynamic behaviors at the rolling contact interface in linear guideway mechanisms. Firstly, analytical method was introduced to understand the contact behaviors based on Hertz contact theory in a point-to-point way. Then, the finite element approach with a three-dimensional surface-to-surface contact model and appropriate contact stiffness was developed to study the dynamic characteristics of such linear guideways. Finally, experiments with modal test were conducted to verify the significance of both the analytical and the numerical results. Results told that the finite element approach may provide significant predictions. The study results also concluded that the current nonlinear models based on Hertz's contact theory may accurately describe the contact characteristic of a linear guideway mechanism. In the modal analysis, it was told that the natural frequencies vary a little with different loading conditions; however, the mode shapes are changed obviously with the magnitude of applied loads. Therefore, the stiffness of contact interface needs to be properly adjusted during simulation which may affect the dynamic characteristics of the machine tools.

An Adaptive Virtual Machine Location Selection Mechanism in Distributed Cloud

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4776-4798
    • /
    • 2015
  • The location selection of virtual machines in distributed cloud is difficult because of the physical resource distribution, allocation of multi-dimensional resources, and resource unit cost. In this study, we propose a multi-object virtual machine location selection algorithm (MOVMLSA) based on group information, doubly linked list structure and genetic algorithm. On the basis of the collaboration of multi-dimensional resources, a fitness function is designed using fuzzy logic control parameters, which can be used to optimize search space solutions. In the location selection process, an orderly information code based on group and resource information can be generated by adopting the memory mechanism of biological immune systems. This approach, along with the dominant elite strategy, enables the updating of the population. The tournament selection method is used to optimize the operator mechanisms of the single-point crossover and X-point mutation during the population selection. Such a method can be used to obtain an optimal solution for the rapid location selection of virtual machines. Experimental results show that the proposed algorithm is effective in reducing the number of used physical machines and in improving the resource utilization of physical machines. The algorithm improves the utilization degree of multi-dimensional resource synergy and reduces the comprehensive unit cost of resources.

Five-axis CL Data Generation by Considering Tool Swept Surface Model in Face Milling of Sculptured Surface (공구이동궤적 모델을 이용한 5축 페이스밀링 가공데이터 생성)

  • 이정근;박정환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.35-43
    • /
    • 2004
  • It is well known that the five-axis machining has advantages of tool accessibility and machined surface quality when compared with conventional three-axis machining. Traditional researches on the five-axis tool-path generation have addressed interferences such as cutter gouging, collision, machine kinematics and optimization of a CL(cutter location) or a cutter position. In the paper it is presented that optimal CL data for a face-milling cutter moving on a tool-path are obtained by incorporating TSS(tool swept surface) model. The TSS model from current CL position to the next CL position is constructed based on machine kinematics as well as cutter geometry, with which the deviation from the design surface can be computed. Then the next CC(cutter-contact) point should be adjusted such that the deviation conforms to given machining tolerance value. The proposed algorithm was implemented and applied to a marine propeller machining, which proved effective from a quantitative point of view. In addition, the algorithm using the TSS can also be applied to avoid cutter convex interferences in general three-axis NC machining.

Tilt Measurement of Drilling Machine Using the Laser Interferometer (레이저 간섭계를 이용한 드릴링 머신의 틸트 측정)

  • 이승수;손영지;김순경;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.479-484
    • /
    • 1996
  • This paper describes a method of measuring tilt motion. This method measures the tilt motion of drilling machines using a laser interferometer, a simple sliding linear bearing, measurement of the probe and the LSC(least square center) method. The next order of business is discussing the procedure of measurement. First, The measured position is considered to be the point of contact between the drill shank and the probe. The revolution of the drill axis delivers the point of contact to the probe. Second, because the laser interferometer is attached on the sliding linear bearing, any movement of probe influences laser reflector. Thus, the laser program displays the moving factor of laser reflector. Namely, this is tilt factor. Third. the points of measurement are a full circle which has 8 points (each are 45$^{\circ}$), After it is finished measuring the 8 points, let the spindle of the drilling machine move down about 5 cm. Repeating this procedure three times, we can get tilt motion's values which are calculated by LSC method. Many error factors affect the accurate measurement of tilt motion. However in this paper we ignore some error factors because they are less significant than tilt motion.

  • PDF