• Title/Summary/Keyword: Point Injection

Search Result 683, Processing Time 0.027 seconds

Effects of Injection Timing on the Lean Misfire Limit in a SI Engine (가솔린 엔진의 연료분사시기가 희박가연한계에 미치는 영향에 관한 연구)

  • 엄인용;정경석;정인석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.97-103
    • /
    • 1997
  • Effects of fuel injection timing on the lean misfire limit of a sequential MPI SI engine has been investigated. To investigate the interaction of injection timing and intake flow characteristics, so called axial stratification phenomena, 4 kinds of different intake swirl port of the same combustion chamber geometry have been teated in a single cylinder engine test bench. And 2 kinds of fuel, gasoline and compressed natural gas(CNG), were used to see the effect of liquid fuel vaporization. Result shows that combination of port swirl and injection timing governs the lean misfire limit and lean misfire limit envelopes remain almost the same for a given ratio regardless of engine speed. It is also found that two phase flow has some effects on lean misfire limit.

  • PDF

Liquid LPG Spray Characteristics With Injection Pressure Variation -Comparison with Diesel Spray- (분사압력변화에 따른 액체 LPG 분무특성 -디젤분무와의 비교-)

  • Lim, Hee-Sung;Park, Kweon-Ha
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.43-50
    • /
    • 1999
  • Liquefied petroleum gas (LPG) has been used as motor fuel due to its low emissions and low cost. The fuel feeding system has been improved with stringent requirement for exhaust emissions. LPG carburetion system was first introduced, then the system has been changed to a precisely controlled gas injection system, but this gas feeding system has a limitation on improving power output. In order to improve an engine performance, a multi-point port injection system was introduced recently, and a liquid direct injection system into a cylinder was suggested as a next generation system to maximize a fuel economy as well as a power. This study addresses the analysis of the LPG spray from diesel injectors. The spray images are visualized and compared with diesel sprays in a wide injection pressure range. The photographs show much wider dispersion of LPG sprays.

  • PDF

Optimum Injection Molding Condition Search With Process Monitoring System (공정 모니터링 시스템을 이용한 최적 사출 조건 설정)

  • Kang, J.K.;Cho, Y.K.;Chang, H.K.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.54-60
    • /
    • 2007
  • Optimum injection molding condition for a box mold was searched by the Response Surface Analysis(RSA) with the aid of process monitoring system(PMS). Process variables on the control panel of the injection molding machine such as barrel temperatures, screw speed profile, holding pressures, etc. cannot guarantee the uniformity of the material variables directly related with the state of the product in the mold cavity. In order to make sure the state of the resin in the cavity, pressures and temperatures in the cavity, runner and nozzle were monitored in the experiment with the PMS. To accomplish the consistency of the molding process, dependent variables such as the switchover point and holding time were searched with the PMS. With a proper objective function about deflection of the box-type product, the optimum injection molding condition was obtained.

A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle (吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구)

  • 박종구;양옥룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.77-86
    • /
    • 1992
  • This paper discusses the thermodynamic study on the suction cooling-steam injected gas turbine cycle. The aim of this study is to improve the thermal efficiency and the specific output by steam injection produced by the waste heat from the waste heat recovery boiler and by cooling compressor inlet air by an ammonia absorption-type suction cooling system. The operating region of this newly devised cycle depends upon the pinch point limit and the outlet temperature of refrigerator. The higher steam injection ratio and the lower the evaporating temperature of refrigerant allow the higher thermal efficiency and the specific output. The optimum pressure ratios and the steam injection ratios for the maximum thermal efficiency and the specific output can be found. It is evident that this cycle considered as one of the most effective methods which can obtain the higher thermal efficiency and the specific output comparing with the conventional simple cycle and steam injected gas turbine cycle.

Effects of Process Variables on the Gas Penetrated Part in Gas-Assisted Injection Molding

  • Han, Seong-Ryeol;Park, Tae-Won;Jeong, Yeong-Deug
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.8-11
    • /
    • 2006
  • Gas-assisted injection molding (GAIM) process reduces the required injection pressure during mold filling stage as well as the shrinkage and warpage of the part and cycle time. Despite of these advantages, this process needs new parameters and makes the application more difficult because gas and melt interact during the injection molding process. Important GAIM factors involved in this process are gas penetration design, locations of gas injection points, shot size, delay time to inject gas as well as common injection molding parameters. In this study, the experiments are conducted to investigate effects of GAIM process variables on the gas penetration for PP (Polypropylene) and ABS (Acrylonitrile Butadiene Styrene) moldings by changing the gas injection point. Taguchi method is used for the design of the experiments. When the gas is injected at a cavity's center, the most effective factor is the shot size. When the gas is injected at a cavity's end, the most effective factor is the melt temperature. The injection speed is also an effective factor in GAIM process.

A Modeling about Penetration Behavior of Diesel Engine Liquid Fuel Spray (디젤기관의 분무선단 도달거리에 관한 모델링)

  • 안수길;배종욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.140-152
    • /
    • 1989
  • The study on the penetration of sprays during the initial phase of injection period, i.e. ignition delay period, in high speed small D.I. diesel engines are strongly affected by such behavior. To investigate the penetration of the sprays injected through single cylinderical orifice, a mathematical model was developed and compared with experimental results. In this model, radial heterogeneity of fuel density in the spray, transiency of injection pressure difference, and spray outrunning phenomenon were considered simultaneously. Experiments on the behaviors of sprays in the high pressure air chamber were conducted at various injection pressure differences and different levels of back air pressure. The behaviors of sprays injected into the chamber through the conventional Bosch injection pump were visualized with side stroboscopic illumination. Comparison of the experimental results with predictions from the mathematical model confirmed the validity of the model. It was also found that during the initial phase of the injection period the penetration of sprays vs. time appeared to have two transition points; one corresponded to disintegration point of liquid fuel jet, the other to the beginning of steady state injection.

A Study of High Viscosity Melt Front Advancement at the Filling Process of Injection-Compression Mold

  • Park, Gyun-Myoung;Kim, Chung-Kyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.333-334
    • /
    • 2002
  • Injection-compression molding parts are many cases with complicated boundary condition which is difficult to analysis of mold characteristics precisely. In this study, the effects of various process parameters such as multi-point gate location, initial charge volume, injection time and pressure have been investigated using finite element method to fomulate the melt front advancement during the mold filling process. A general governing equation for tracking the filling process during injection-compression molding is applied to volume of fluid method. To verify the results of present analysis, they are compared with those of the other paper. The results show a strong effect of processing conditions as a result of variations in the three-dimensional complex geometry model.

  • PDF

Clinical Consideration of Trigger Point Injection/Dry Needling Therapy: A Narrative Review

  • Jung, Jae-Kwang;Byun, Jin-Seok;Choi, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • v.42 no.3
    • /
    • pp.53-61
    • /
    • 2017
  • Myogenous temporomandibular disorder is a collective term for pathologic conditions of the masticatory muscles, mainly characterized by pain and dysfunction associated with various pathophysiological processes. Among the subtypes of myogenous temporomandibular disorder, myofascial pain is one of the most common muscle disorders, characterized by the presence of trigger points (TrPs). Various modalities, such as ultrasound, manipulative therapy, spray-and-stretch technique, transcutaneous electrical nerve stimulation, injection/dry needling, and low-level laser therapy are used to inactivate TrPs. Needling/injection on the TrPs is one of the most common treatments for myofascial pain. Despite the evidence, there is continued controversy over defining the biological and clinical characteristics of TrPs and the efficacy of injection/dry needling. This review discusses the current concept of injection/needling to relieve TrPs.

Liquid LPG Spray Characteristics With Injection Pressure Variation;Comparison with Diesel Spray (분사압력변화에 따른 액체 LPG 분무특성;디젤분무와의 비교)

  • Lim, Hee-Sung;Park, Kweon-Ha
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.21-26
    • /
    • 1999
  • Liquefied petroleum gas(LPG) has been used as motor fuel due to its low emissions and low cost. The fuel feeding system has been improved with stringent requirement for exhaust emissions. LPG carburation system was firstly introduced, then the system changed into a gas injection system controlled precisely, but those gas feeding system has a limitation on improving power output. In order to improve an engine performance, a multi-point port injection system was introduced recently, and a liquid direct injection system into a cylinder was suggested as a next generation system to maximize a fuel economy as well as a power. This study addresses the analysis of the LPG spray from diesel injectors. The spray images are visualized and compared with diesel sprays in a wide injection pressure range. The photographs show much wider dispersion of LPG sprays.

  • PDF

Fuel Spray Characteristics in the High Pressure Injection Process (고압분사 시 연료분무 특성에 관한 연구)

  • Ahn, J.H.;Kim, H.M.;Shin, M.C.;Kim, S.W.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.31-38
    • /
    • 2003
  • Constant volume combustion chamber has been designed to investigate diesel spray characteristics with Common-Rail injection system to realize high pressure injection. In this study, two methods of measurements, Schlieren shadowgraphy and Mie scattering imaging method ate applied experimentally to study spray form and liquid phase zone in high pressure, high temperature conditions. Diesel fuel is injected at the point which ignited mixture gas is completely burned. The effect of injection pressure, injector hole diameter, ambient gas temperature and density are investigated experimentally.

  • PDF