• Title/Summary/Keyword: Pohang-Heunghae

Search Result 18, Processing Time 0.027 seconds

Deformation History of the Pohang Basin in the Heunghae Area, Pohang and Consideration on Characteristics of Coseismic Ground Deformations of the 2017 Pohang Earthquake (Mw 5.4), Korea (포항 흥해지역에서 포항분지의 변형작용사와 2017 포항지진(Mw 5.4) 동시성 지표변형 특성 고찰)

  • Ji-Hoon, Kang
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.485-505
    • /
    • 2022
  • On November 15, 2017, a Mw 5.4 Pohang Earthquake occurred at about 4 km hypocenter in the Heunghae area, and caused great damage to Pohang city, Korea. In the Heunghae area, which is the central part of the Pohang Basin, the Cretaceous Gyeongsang Supergroup and the Late Cretaceous to Early Paleogene Bulguksa igneous rocks as basement rocks and the Neogene Yeonil Group as the fillings of the Pohang Basin, are distributed. In this paper, structural and geological researches on the crustal deformations (folds, faults, joints) in the Pohang Basin and the coseismic ground deformations (sand volcanoes, ground cracks, pup-up structures) of Pohang Earthquake were carried out, and the deformation history of the Pohang Basin and characteristics of the coseismic ground deformations were considered. The crustal deformations were formed through at least five deformation stages before the Quaternary faulting: forming stages of the normal-slip (Gokgang fault) faults which strike (N)NE and dip at high angles, and the high-angle joints of E-W trend regionally recognized in Yeonil Group and the faults (sub)parallel to them, and the conjugate normal-slip faults (Heunghae fault and Hyeongsan fault) which strike E-W and dip at middle or low angles and the accompanying E-W folds, and the conjugate strike-slip faults dipped at high angles in which the (N)NW and E-W (NE) striking fault sets show the (reverse) sinistral and dextral strike-slips, respectively, and the conjugate reverse-slip faults in which the NNE and NNW striking fault sets dip at middle angles and the accompanying N-S folds. Sand volcanoes often exhibit linear arrangements (sub)parallel to ground cracks in the coseismic ground deformations. The N-S or (N)NE trending pop-up structures and ground cracks and E-W or (W)NW trending ground were formed by the reverse-slip movement of the earthquake source fault and the accompanying buckling folding of its hanging wall due to the maximum horizontal stress of the Pohang Earthquake source. These structural activities occurred extensively in the Heunghae area, which is at the hanging wall of the earthquake source fault, and caused enormous property damages here.

Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Janggi Basins ; Geologic Structure in the Areas of Heunghae and Hyungsan River by Gravity Prospecting Method (포항 및 장기분지에 대한 고지자기, 층서 및 구조 연구; 중력탐사에 의한 홍해 및 형산강지역의 지질구조)

  • Min, Kyung Duck;Yun, Hyesu;Moon, Hi-Soo;Lee, Hyun Koo;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.351-358
    • /
    • 1992
  • The gravity measurement has been conducted at 327 station with an interval of 25 m along the survey lines of 1.6 km and 1.7 km traversing Hyungsan river and of 2.35 km and 2.42 km running N-S direction near Heunghae-eup in Pohang basin. Bouguer gravity anomalies were obtained, and geologic structure along four survey lines were interpreted by applying Fourier series and Talwani methods for two demensional body. A fault is in existence along the Hyungsan river, and northern block of it is displaced down by 150 m to 200 m relative to southern one. The thicknesses of Yeonil Group vary from 250 m to 550 m and from 150 m to 300 m in the northern and southern blocks of the fault, respectively. Another fault is in existence running E-W direction near Heunghae-eup, and its southern block is displaced down by about 250 m relative to its northern block. The thicknesses of Yeonil Group vary from 200 m to 400 m and from 500 m to 700 m in the southern and northern blocks of the fault, respectively. Above two faults are normal faults and make a graben structure, which results the age of rocks in the central region between the faults is younger than those of outside regions. This result coincides with that of paleontological study.

  • PDF

Optically Stimulated Luminescence Dating on the Quaternary deposits in Yonghan-ri, Heunghae-eup, Pohang City, South Korea (포항시 흥해읍 용한리지역에 분포하는 제4기 퇴적층의 OSL 연대)

  • JUNG, Hea Kyung;Kim, Cheong Bin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.141-145
    • /
    • 2019
  • This study investigated Quaternary sand deposits in the process of surveying Quaternary deposits distributed in Yonghan-ri, Heunghae-eup, Pohang city. Field geological surveys were conducted and OSL dating samples were taken. The altitude of the Quaternary sand deposits layer is about 15m, and there are two upper and lower sand dune layers, and a peat layer is developed between them. The sampling point are just above the peat layer, and the altitude level is about 13.4m (YHO-1) and about 13.7m (YHO-2). OSL dating was performed for YHO-1 and YHO-2 and the results were 69 ± 6 ka and 62 ± 5 ka, respectively. The date analyzed are interpreted as MIS 4. On the other hand, the formation time of the peat layer at an altitude of about 13.2 to 13.7m can be compared with the results of the OSL dating of the above sandy deposits. The peat layer can be inferred to have formed during MIS 5a or earlier.

Natural Baseline Groundwater Quality in Shingwang-myeon and Heunghae-eup, Pohang, Korea (포항시 신광면 및 흥해읍 일대 지하수의 배경수질 연구)

  • Lee, Hyun A;Lee, Hyunjoo;Kwon, Eunhye;Park, Jonghoon;Woo, Nam C.
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.469-483
    • /
    • 2020
  • The results of long-term groundwater level and quality monitoring can be used not only as the basic data for evaluating the impact of various disasters including climate change and establishing responses, but also as key data for predicting and managing geological disasters such as earthquakes. Some countries use groundwater level and quality monitoring for researches to predict earthquakes and to assess the impacts of the earthquake disaster. However, a few cases in Korea report on individual groundwater quality factors (i.e., dissolved ions) observed before and after the earthquakes, being different from other countries. To establish the abnormality criteria for groundwater quality in Pohang, groundwater samples were collected and analyzed five times from 14 agricultural or private wells existing in Shingwang-myeon and Heunghae-eup. As a result of the analysis, it was found that Ca2+ was the dominant cation in Shingwang-myeon, while Na+ was the dominant cation in Heunghae-eup. The elevated NO3- concentration in Shingwang-myeon is contributed to the agricultural activity in the area. A high concentration of Fe was detected in a well on Heunghae-eup; the concentration exceeded the drinking water standard by nearly 100 times. Relatively higher dissolved ions were observed in the groundwater of Heunghae-eup, and it is considered as the result of the flow velocity difference and water-rock reaction accompanying the difference in bedrock and sediment characteristics. The groundwater of Shingwang-myeon appeared to be most affected by the weathering of granite and silicates, while that of Heunghae-eup was mainly affected by the weathering of silicates and carbonate. The background concentrations (baselines) of groundwater Shingwang-myeon and Heunghae-eup was identified through the survey; however, the continuous monitoring is required to monitor the possible changes and the repeatability of seasonal variation.

Liquefaction Hazard Map Based on in Pohang Under Based on Earthquake Scenarios (지진시나리오 기반의 포항지역 액상화위험도 작성 연구)

  • Baek, Woo Hyun;Choi, Jae Soon;Ahn, Jae-Kwang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.219-224
    • /
    • 2018
  • The The purpose of this study is to investigate the actual liquefaction occurrence site in Pohang area and to analyze the ground characteristics of Pohang area using the data of the National Geotechnical Information DB Center and to calculate the liquefaction potential index. Based on the results, the distribution of soil classification in Pohang area and the risk of liquefaction under various earthquake accelerations were prepared. As a result of the study, soils in Pohang has the soil characteristics that can cause the site amplification phenomenon. In the analysis through liquefaction hazard maps under earthquake scenarios, it is found that the liquefaction occurred in the area of Heunghae town is more likely to be liquefied than other areas in Pohang. From these results, it is expected that the study on the preparation of liquefaction hazard maps will contribute to the preparation of countermeasures against liquefaction by predicting the possibility in the future.

The paleo-shoreline and formation age of the 1st marine terrace in Heunghae-eup Pohang City, South Korea : evaluation of the mode and rate of the late Quaternary tectonism (I) (포항시 흥해읍 일대 해안단구 제1면의 구정선 고도와 형성 시기 - 한반도 제4기 후기 지각운동의 양식과 변형률 산출을 위한 연구(I) -)

  • Shin, Jae Ryul;Park, Kyung Geun
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.3
    • /
    • pp.703-713
    • /
    • 2016
  • This study documents the altitude of paleo-shoreline and formation age of the $1^{st}$ marine terrace emerged around Heunghae-eup Pohang City (South Korea). As a result, the $1^{st}$ terrace representing 10 m of the paleo-shoreline was formed at MIS 5c around 100,000 BP and was influenced repetitive sedimentation of sea-wave till regression of MIS 5a. The result is recognized as a definite truth for the $1^{st}$ terrace in the eastern coast of the Korean peninsula based on synthetic reviews of previous studies and cross-validation of absolute age data. Furthermore, this study deduces a sea stand at MIS 5c from the geomorphological contrast method, but precise determination of paleo-shoreline of the $2^{nd}$ terrace should be required to estimate that of MIS 5c.

  • PDF

On the Latest Tectonic Environment Around Northern Part of the Yangsan Fault, Korea (양산단층 북부 일대의 최후기 지구조환경에 대해)

  • Ryoo, Chung-Ryul;Kang, Ji-Hoon;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.173-184
    • /
    • 2018
  • Geologic structures related to the latest event in the evolution around Gyeongsang Basin are mainly associated with the Yangsan Fault. In particular, the structures in the northern part of the Yangsan Fault are mainly observed in the region between Bogyeongsa Temple and Danguri. Such structures are also clustered in the vicinity of the Yangsan Fault, exhibiting similar geometric and kinematic patterns. In general, N-S and NE-SW trending fractures and tectonogeomorphic lineament are mainly eastward dipping reverse faults, such that the blocks in the east of the structures moved west or northwest. The reverse faults are segmented by NW trending fractures that accommodate strike-slip movements. The reverse faults and geomorphotectonic lineaments related to the latest event of deformation in the northern part of the Yangsan Fault show a westward convex patterns. We infer that these structures were initially normal faults that formed during a NW-SE extensional environment and were later reactivated during an E-W compressional one. Such a deformation pattern is also well developed around Pohang-Heunghae area based on the tectonogeomorphic analysis, which appears to be closely related to the Pohang Earthquake (15 Nov. 2017), and its development of the surface rupture and highly damaged zones.

Gravity Survey of the Tertiary Basin in the Southern Part of Korean Peninsula (한반도 동남부에 분포하는 제3기 퇴적분지에 대한 중력탐사)

  • Min, Kyung Duck;Bang, Sung Soo;Hyun, Yong Ho
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.167-177
    • /
    • 1992
  • The gravity measurement has been conducted at 53 and 34 stations with an interval of 1~1.5 km along the national roads of about 47 km and 34 km running from Duksungri to Yangpori and from Angangri to Byungpori, Kyungsangbookdo, respectively. The subsurface geology and geologic structure of Tertiary Pohang and Janggi basins along two survey lines are interpreted quantitatively by applying Fourier series and Talwani methods for Bouguer gravity anomaly. The depths of Conrad discontinuity vary from 11.8 to 12.5 km and 11.5 to 13.2 km along the survey lines between Duksungri and Yangpori, and Angangri and Byungpori, respectively. The depths of pre-Cambrian Gneiss complex underneath Kyungsang Supergroup vary from 3.8 to 4.2 km and 3.8 to 4.6 km along the survey lines between Duksungri and Yangpori, and Angangri and Byungpori, respectively. Massive granite bodies which are not exposed along the survey line between Duksungri and Yangpori are distributed on a large scale at the subsurface between Duksungri and Ochun, and Daegokri and Yangpori. Along the survey line between Angangri and Byungpori, it is exposed at Angangri, and extends underneath Chungrimdong, Pohang city. Andesite is distributed on a small scale underneath Pohang city and Ochun. The thicknesses of Tertiary Yonil and Janggi Groups are 0.2~0.9 km and 0.1~0.5 km, respectively. The Tuffaceous rocks which are the lowest formation of Tertiary sedimentary rocks are distributed with the thickness of 0.2 km at the surface and between Kyungsang Supergroup and Yonil or Janggi Groups. The Yonil and Janggi Groups are in fault contact by a fault running through Ochun and Chungrimdong, Pohang city. Two other faults are newly found near Heunghae-eup and Hyungsan river.

  • PDF

Evaluation of Dynamic Ground Properties of Pohang Area Based on In-situ and Laboratory Test (현장실험 및 동적실내실험을 이용한 포항지역 동적 지반특성 평가)

  • Kim, Jongkwan;Kwak, Tae-Young;Han, Jin-Tae;Hwang, Byong-Youn;Kim, Ki-Seog
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.5-20
    • /
    • 2020
  • In 2017, after the Pohang earthquake, liquefaction phenomena were firstly observed after the observation of domestic earthquake by epicenter. In this study, various in-situ tests and laboratory tests were performed to determine the dynamic properties in (1) Songlim Park, (2) Heunghae-eup, Mangcheon-ri and (3) Heungan-ri, Pohang. As a site investigation, the standard penetration test (SPT), cone penetration test (CPT), multichannel analysis of surface wave (MASW), density logging, downhole test, and electrical resistivity survey were performed. In addition, cyclic triaxial test against sampled sand from site was also conducted. Based on the result, high ground water level and loose sand layer in shallow depth were observed for all sites. In addition, liquefaction resistance ratio of soil sampled from Songlim park was lower than those of Jumunjin sand, Toyoura sand, and Ottawa sand.

Hydrogeochemical Characteristics of Groundwater on Well Depth Variation in the Heunghae Area, Korea (심도 변화에 따른 흥해지역 지하수의 수리 지화학적 특성)

  • Yun Uk;Cho Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.391-405
    • /
    • 2005
  • Chemical and isotopic analysis for stream water, shallow groundwater, intermediate groundwater and deep groundwater was carried out to grasp hydrogeochemical characteristics of groundwater in the Heunghae area, Pohang city. Water type of stream water and shallow groundwaters is typified as Ca-Cl type, intermediate groundwater is $Na-HCO_3$, and deep groundwater is prominent in Wa-Cl type. $HCO_3^-\;and\;SiO_2$ in shallow groundwater are originated from weathering of silicate minerals, whereas those of deep groundwaters are resulted from weathering of carbonate minerals. Ca and Mg ions in both shallow and deep groundwaters are resulted from weathering of calcite and dolomite. $SO_4^{2-}$ in shallow groundwater is originated mainly from pyrite oxidation. As well depth increases, pH and TDS increase, but Eh and DO decrease. Alkali metal contents(K, Na, Li) increases as well depth increases, but alkali earth metal(Mg, Ca) and hi concentrations increase as well depth decreases. Anions, halogen elements(F, Cl, Br), and $HCO_3$ contents increase as well depth increases. The average stable isotope value of the groundwater of each depth is as follows; deep groundwater: ${\delta}^{18}O=-10.1\%o,\;{\delta}D=-65.8\%_{\circ}$, intermediate groundwater: ${\delta}^{18}O=-8.9\%_{\circ},\;{\delta}D=-59.6\%_{\circ}$, shallow groungwater : ${\delta}^{18}O=-8.0\%_{\circ},\;{\delta}D=-53.6\%_{\circ}$, surface water : ${\delta}^{18}O=-7.9\%_{\circ},\;{\delta}D=-53.3\%_{\circ}$ respectively.