• Title/Summary/Keyword: Pogo Instability

Search Result 16, Processing Time 0.034 seconds

A Study on the Analysis of Pogo Instability and Its Suppression of Liquid Propellant Rocket (액체추진 로켓의 포고 불안정성 해석과 제어에 관한 연구)

  • Jang, Hong Seok;Yeon, Jeong Heum;Yun, Seong Gi;Jeong, Tae Gyu;Jang, Yeong Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Pogo is the instability resulting from the interaction between rocket structure and propulsion system of liquid propellant rocket. The coupling of structure and propulsion system can lead to severe problem in rocket. For the analysis of pogo, a time-invariant linearized mathematical model is developed for a selected flight time. Propulsion system is modeled using element representations for each components. Rocket structure is modeled using FEM. Form the results of modal analysis of structure, the behavior of structure can be represented. System equations for coupling structure and propulsion system are composed. The stability in obtained by the eigen solution of system matrix. The optimization of the design variables such as size, place of accumulator for suppressing pogo instability in carried out. This article of study can be used to determine the degree of stability, and guide the design of pogo suppression system.

Review of POGO and PSD (POGO와 PSD의 소개)

  • 고광웅;이한주;정동운;이상용
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • To reduce the possibility of longitudinal dynamic instability, called "POGO", in the liquid rocket system due to the feedback effect of a main structure and a fuel-feeding system, several different types of PSD(POGO Suppression Device) systems have been studied. In the present study, several different types of PSD were reviewed. Basically, all PSD systems can be categorized into two groups; a passive PSD or an active PSD. We can classify the passive PSD's into more detailed groups according to their compliance methods; localized compliance methods or distributed compliance methods. As a result of our intensive review on various PSD's, the gas-filled accumulator with a level control system is considered to be the most suitable one to suppress the POGO instability without mal-effects to the performance of a fuel-feeding system.ng system.

A Study on the Analysis of Pogo Stability of Liquid Propellant Rocket (액체추진로켓의 포고 안정성 해석에 관한 연구)

  • 장홍석;연정흠;윤성기;정태규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.10-13
    • /
    • 2002
  • Pogo is the instability resulting from the interaction between rocket structure and propulsion system of liquid propellant rocket. The coupling of structure and propulsion system can lead to severe problem in rocket. For the analysis of pogo, a time-invariant linearized mathematical model is developed for a selected flight time. Propulsion system is modeled using element representations for each components. The constitutive equation of propulsion system is a homogeneous second-order equation form in the Laplace domain. Rocket structure is modeled using FEM. From the results of modal analysis of structure, the behavior of structure can be represented. System equations for coupling structure and propulsion system are composed of all propulsion system equations and vehicle motion equations reacting on the vehicle by each component of propulsion system. The stability is obtained by the eigen solution of system matrix. The optimization of the design variables such as size, place of accumulator for suppressing pogo instability is carried out. This article of study can be used to determine the degree of stability, and guide the design of pogo suppression system.

  • PDF

Pogo Analysis on the KSR-III Propulsion Feeding System (KSR-III 추진기관 공급계 pogo 해석)

  • Lee H.J.;Jung T.K.;Menshikova O. M.;Jung Y.S.;Cho I.H.;Oh S.H.;Seo K.S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.495-498
    • /
    • 2002
  • This article deals with the introduction of longitudinal instability of liquid rocket (pogo) and the analytical results on the frequency responses of KSR-III propulsion feeding system. Both the stiffness of bellows and the cavitation volume of venturi affect the frequency response of the feeding system. Especially, bellows has a great roll to reduce the natural frequency of the feeding system. Also, oxidizer and fuel feeding systems of the KSR-III have natural frequencies of ${\~}280Hz\;and\;{\~}90Hz$, respectively.

  • PDF

POGO Suppression Device Modeling and Main Parameter Analysis (POGO 억제장치 모델링 및 주요 변수의 정량화)

  • Lee, Han-Ju;Kim, Ji-Hoon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.177-182
    • /
    • 2008
  • In this article, a mathematical modeling which is composed of linearized transfer functions on POGO suppression device was executed. The main parameters of PSD model can not be easily determined from the analysis due to the nonlinearity of the parameters. This article deals a method to get the values of the main parameters from the experimental results.

  • PDF

Dynamic Characteristic Analysis of KSR-III Propulsion Feeding System (KSR-III 추진기관 공급계 동특성 해석)

  • 정태규;정영석;조인현;권오성;정동호;이대성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.75-82
    • /
    • 2001
  • KSR-III propulsion feeding system is designed to feed a certain amount of propellant to engine by the end of combustion. The oscillation of propellant to engine would cause combustion instability and thrust oscillation and POGO phenomenon. This article deal with analysis performed such as the effect of rocket acceleration on the propulsion system and POGO analysis to ensure the performance of KSR-III

  • PDF

Pogo Analysis on the KSR-III Propulsion Feeding System (KSR-III 추진기관 공급계 pogo 해석)

  • ;;O. M. Menshikova
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.45-52
    • /
    • 2002
  • This article deals with the introduction of longitudinal instability of liquid rocket (pogo) and the analytical results on the frequency responses of Korean Sounding Rocket (KSR-III) propulsion feeding system. Both the stiffness of bellows and the cavitation volume of venturi affect the frequency response of the feeding system. Especially, bellows has a great roll to reduce the natural frequency of the feeding system. Also, oxidizer and fuel feeding systems of the KSR-III have natural frequencies of about 280Hz and 90Hz, respectively.

AN ANALYTICAL STUDY ON THE DYNAMIC CHARACTERISTICS OF A LIQUID PROPULSION SYSTEM

  • Lee Han Ju;Lim Seok Hee;Jung Dong Ho;Kim Yong Wook;Oh Seung Hyub
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.325-327
    • /
    • 2004
  • The longitudinal instability (POGO) of the rocket should not be occurred during the whole flight time for the large class liquid propulsion system to complete a mission successfully. The longitudinal instability is caused by the resonance between the propulsion system and rocket structure in the low frequency range below 50Hz, ordinarily. Analysis on the low frequency dynamic characteristics on the liquid propulsion system with staged combustion cycle engine system was performed as a preliminary study on the longitudinal instability analysis.

  • PDF

Structural Dynamic Analysis of a Space Launch Vehicle using an Axisymmetric Two-dimensional Shell Element

  • Sim, JiSoo;Lee, SangGu;Kim, JunBeom;Shin, SangJoon;Park, SeungSoo;Ohm, WonSuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.485-497
    • /
    • 2017
  • The pogo phenomenon refers to a type of multidiscipline-related instability found in space launch vehicles. It is caused by coupling between the fuselage structure and other structural propulsion components. To predict the pogo phenomenon, it is essential to undertake adequate structural modeling and to understand the characteristics of the feedlines and the propulsion system. To do this, a modal analysis is conducted using axisymmetric two-dimensional shell elements. The analysis is validated using examples of existing launch vehicles. Other applications and further plans for pogo analyses are suggested. In addition, research on the pogo phenomenon of Saturn V and the space shuttle is conducted in order to constitute a pogo stability analysis using the results of the present modal analysis.

Proposal of Pipe Pressure Mode Analysis Method in Propulsion System for Predicting the Pogo of Space Launch Vehicle (우주 발사체의 포고현상 예측을 위한 공급/추진계의 파이프 압력모드 해석 기법 제안)

  • Lee, SangGu;Lee, SiHun;Shin, SangJoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.714-717
    • /
    • 2017
  • Among the factors considered in the design stage of a space launch vehicle using liquid propellant, research has been focused out on the pogo phenomenon, longitudinal dynamic instability. The pogo phenomenon refers to the instability that the longitudinal vibration of the launch vehicle structure causes a change in the pressure and flow rate of the fluids in propulsion system, and this change re-excites the fuselage structure. This mechanism constitutes a closed system to gradually increase the vibration of the launch vehicle. This paper specifically focuses on the dynamic analysis of pressure and flow changes in the propulsion system. Based on the example study of the space shuttle, the acoustic modal analysis of the propulsion system is performed to predict the modes of the supply line causing instability of the fuselage.

  • PDF