• 제목/요약/키워드: Podoviridae

검색결과 8건 처리시간 0.028초

Isolation and Characterization of Bacteriophages Infecting Ralstonia solanacearum from Potato Fields

  • Lee, Jihyun;Park, Tae-Ho
    • 식물병연구
    • /
    • 제22권4호
    • /
    • pp.236-242
    • /
    • 2016
  • Bacterial wilt caused by Ralstonia solanacearum is one of the most devastating diseases in major Solanaceae crops. The pathogen is easily disseminated and survives for many years in plant farming system. Although chemicals are applied to control the disease, they are of limited efficacy and cause several problems. Therefore, the use of phage therapy has been suggested to control the disease as a biological agent. In this study, we discovered bacteriophages lysing diverse Ralstonia isolates from plant and soil samples obtained from the potato cultivated field in Jeju. Three times repeated pickings of plaques resulted in obtaining 173 single phages showing diverse spectrum of host-specificity. With the results, 12 core phages were selected and dendrogram was generated. Genetic diversity of the selected phages was also confirmed by AFLP (Amplified Fragment of Length Polymorphism) fingerprinting. The stability of the phages was investigated in various temperatures and various conditions of pH in vitro. The phages were stable at $16^{\circ}C-44^{\circ}C$ and pH 6-10. Morphological characterization of the phages revealed they were all classified into the Podoviridae, but had diverse head sizes. The results of this research will contribute to control the disease and further researches regarding genetic and molecular aspects will facilitate understanding phage and bacteria interaction.

Pectobacterium carotovorum subsp. carotovorum을 침해하는 박테리오파지의 분리 (Isolation of Bacteriophages Which Can Infect Pectobacteirum carotovorum subsp. carotovorum)

  • 지삼녀;스웨타 말호트라;노은정;정규석;이동환;최재혁;윤종철;허성기
    • 식물병연구
    • /
    • 제18권3호
    • /
    • pp.225-230
    • /
    • 2012
  • 국내 주요 배추재배단지 6곳을 정하여 토양 샘플에서 무름병균을 용균할 수 있는 bacteriophage를 분리하였다. 여름배추를 재배하는 평창과 태백의 토양 샘플에서 국내에서 분리한 15개의 다른 무름병균을 기주로 파지를 분리한 결과 태백의 토양은 다양한 병원균을 기주로 증폭하는 반면 평창의 파지는 두 종류의 균에서만 증폭이 되어 매우 좁은 기주 범위를 가졌다. 무름병균 P. carotovorum subsp. carotovorum Pcc3의 균주는 거의 모든 토양 샘플에서 파지를 증폭할 수 있어 앞으로 파지를 이용한 무름병균 예찰 균주로 사용될 수 있는 가능성을 보여 주었다. 국내 무름병균을 용균할 수 있는 파지는 Myoviridae, Podoviridae, Siphoviridae 세 종류로 밝혀 졌으며 국내 거의 전 지역에서 Siphoviridae가 분리되었다.

Genomic Features and Lytic Activity of the Bacteriophage PPPL-1 Effective against Pseudomonas syringae pv. actinidiae, a Cause of Bacterial Canker in Kiwifruit

  • Park, JungKum;Lim, Jeong-A;Yu, Ji-Gang;Oh, Chang-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1542-1546
    • /
    • 2018
  • Bacterial canker in kiwifruit is caused by Pseudomonas syringae pv. actinidiae (Psa). In this study, the bacteriophage PPPL-1 effective against Psa was characterized. Belonging to the Podoviridae family, PPPL-1 was effective against most Psa strains as well as most Pseudomonas syringae pathovars. PPPL-1 carries a 41,149-bp genome with 49 protein coding sequences and is homologous to the previously reported phiPSA2 bacteriophage. The lytic activity of PPPL-1 was stable up to $40^{\circ}C$, within a range of pH 3-11 and under 365 nm UV light. These results indicate that the bacteriophage PPPL-1 might be useful to control Psa in the kiwifruit field.

Biocontrol of Pectobacterium carotovorum subsp. carotovorum Using Bacteriophage PP1

  • Lim, Jeong-A;Jee, Samnyu;Lee, Dong Hwan;Roh, Eunjung;Jung, Kyusuk;Oh, Changsik;Heu, Sunggi
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권8호
    • /
    • pp.1147-1153
    • /
    • 2013
  • Pectobacterium carotovorum subsp. carotovorum (formerly Erwinia carotovora subsp. carotovora) is a plant pathogen that causes soft rot and stem rot diseases in several crops, including Chinese cabbage, potato, and tomato. To control this bacterium, we isolated a bacteriophage, PP1, with lytic activity against P. carotovorum subsp. carotovorum. Transmission electron microscopy revealed that the PP1 phage belongs to the Podoviridae family of the order Caudovirales, which exhibit icosahedral heads and short non-contractile tails. PP1 phage showed high specificity for P. carotovorum subsp. carotovorum, and several bacteria belonging to different species and phyla were resistant to PP1. This phage showed rapid and strong lytic activity against its host bacteria in liquid medium and was stable over a broad range of pH values. Disease caused by P. carotovorum subsp. carotovorum was significantly reduced by PP1 treatment. Overall, PP1 bacteriophage effectively controls P. carotovorum subsp. carotovorum.

Characterization of the Lytic Bacteriophage phiEaP-8 Effective against Both Erwinia amylovora and Erwinia pyrifoliae Causing Severe Diseases in Apple and Pear

  • Park, Jungkum;Lee, Gyu Min;Kim, Donghyuk;Park, Duck Hwan;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • 제34권5호
    • /
    • pp.445-450
    • /
    • 2018
  • Bacteriophages, bacteria-infecting viruses, have been recently reconsidered as a biological control tool for preventing bacterial pathogens. Erwinia amylovora and E. pyrifoliae cause fire blight and black shoot blight disease in apple and pear, respectively. In this study, the bacteriophage phiEaP-8 was isolated from apple orchard soil and could efficiently and specifically kill both E. amylovora and E. pyrifoliae. This bacteriophage belongs to the Podoviridae family. Whole genome analysis revealed that phiEaP-8 carries a 75,929 bp genomic DNA with 78 coding sequences and 5 tRNA genes. Genome comparison showed that phiEaP-8 has only 85% identity to known bacteriophages at the DNA level. PhiEaP-8 retained lytic activity up to $50^{\circ}C$, within a pH range from 5 to 10, and under 365 nm UV light. Based on these characteristics, the bacteriophage phiEaP-8 is novel and carries potential to control both E. amylovora and E. pyrifoliae in apple and pear.

Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

  • Yu, Ji-Gang;Lim, Jeong-A;Song, Yu-Rim;Heu, Sunggi;Kim, Gyoung Hee;Koh, Young Jin;Oh, Chang-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.385-393
    • /
    • 2016
  • Pseudomonas syringae pv. actinidiae causes bacterial canker disease in kiwifruit. Owing to the prohibition of agricultural antibiotic use in major kiwifruit-cultivating countries, alternative methods need to be developed to manage this disease. Bacteriophages are viruses that specifically infect target bacteria and have recently been reconsidered as potential biological control agents for bacterial pathogens owing to their specificity in terms of host range. In this study, we isolated bacteriophages against P. syringae pv. actinidiae from soils collected from kiwifruit orchards in Korea and selected seven bacteriophages for further characterization based on restriction enzyme digestion patterns of genomic DNA. Among the studied bacteriophages, two belong to the Myoviridae family and three belong to the Podoviridae family, based on morphology observed by transmission electron microscopy. The host range of the selected bacteriophages was confirmed using 18 strains of P. syringae pv. actinidiae, including the Psa2 and Psa3 groups, and some were also effective against other P. syringae pathovars. Lytic activity of the selected bacteriophages was sustained in vitro until 80 h, and their activity remained stable up to 50℃, at pH 11, and under UV-B light. These results indicate that the isolated bacteriophages are specific to P. syringae species and are resistant to various environmental factors, implying their potential use in control of bacterial canker disease in kiwifruits.

Biocontrol Potential of a Lytic Bacteriophage PE204 against Bacterial Wilt of Tomato

  • Bae, Ju Young;Wu, Jing;Lee, Hyoung Ju;Jo, Eun Jeong;Murugaiyan, Senthilkumar;Chung, Eunsook;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1613-1620
    • /
    • 2012
  • Bacterial wilt caused by Ralstonia solanacearum is a devastating disease of many economically important crops. Since there is no promising control strategy for bacterial wilt, phage therapy could be adopted using virulent phages. We used phage PE204 as a model lytic bacteriophage to investigate its biocontrol potential for bacterial wilt on tomato plants. The phage PE204 has a short-tailed icosahedral structure and double-stranded DNA genome similar to that of the members of Podoviridae. PE204 is stable under a wide range of temperature and pH, and is also stable in the presence of the surfactant Silwet L-77. An artificial soil microcosm (ASM) to study phage stability in soil was adopted to investigate phage viability under a controlled system. Whereas phage showed less stability under elevated temperature in the ASM, the presence of host bacteria helped to maintain a stable phage population. Simultaneous treatment of phage PE204 at $10^8$ PFU/ml with R. solanacearum on tomato rhizosphere completely inhibited bacterial wilt occurrence, and amendment of Silwet L-77 at 0.1% to the phage suspension did not impair the disease control activity of PE204. The biocontrol activities of phage PE204 application onto tomato rhizosphere before or after R. solanacearum inoculation were also investigated. Whereas pretreatment with the phage was not effective in the control of bacterial wilt, post-treatment of PE204 delayed bacterial wilt development. Our results suggested that appropriate application of lytic phages to the plant root system with a surfactant such as Silwet L-77 could be used to control the bacterial wilt of crops.

서해안 양식장에서 분리한 Vibrio alginolyticus의 특이 bacteriophage에 대한 구조적 특성 (Morphological characterization of Vibrio alginolyticus specific bacteriophage isolated from fish farms on west coast of Korea)

  • 허용주;이찬흔;백민석;안현미;황요셉;박관하;최상훈
    • 한국어병학회지
    • /
    • 제25권3호
    • /
    • pp.165-172
    • /
    • 2012
  • Vibrio alginolyticus (V. alginolyticus) 는 우리나라 전 연안에서 높은 빈도로 발견되며 인간 및 어패류에 감염을 유발시키는 박테리아의 일종이다. 본 연구는 서해안 양식장의 해수와 어패류에서 V. alginolyticus와 이에 대한 특이적인 용균성 파아지를 분리하였으며 분리된 파아지의 형태학적 특성을 전자현미경으로 확인 하였다. 또한 파아지의 핵산의 종류 및 구조 단백질의 특성 대한 연구가 수행되었다. 분리된 파아지는 형태학적으로 60 nm의 육각형 두부와 20 nm의 짧은 미부를 가진 podoviridae과로 분류되었다. 핵산을 분리한 결과 23 Kb 크기의 DNA로 판명 되었으며 구조 단백질은 37.8 kDa과 198 kDa 사이에 7종류의 단백질 분획이 존재함을 확인 하였다.