• Title/Summary/Keyword: Pneumatic Model

Search Result 201, Processing Time 0.026 seconds

A Study on Optimal Design of Automotive Hydraulic Control System for Slip Ratio Control (슬립율 제어를 위한 자동차용 유압 조절시스템의 최적 설계에 관한 연구)

  • 김대원;김진한;최석창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.41-50
    • /
    • 1998
  • In this study, to investigate a characteristics of slip ratio control of H.C.U for ABS, half car model tester were developed and a new H.C.U. was compactly designed comparing to the commercical H.C.U. for ABS. In half car model tester, variable inertia wheel has been used to load the car weights and braking forces according to the road surface conditions which were realized by pneumatic cylinder. And solenoid valves using P.W.M. (Pulse Width Modulation) method were installed in the new H.C.U The slip ratio characteristics of tire had been measured using half car model tester and the results were used in the control simulation for a new H.C.U.

  • PDF

A Study on the Simulation of Leak Flow-rate Using Isothermal Chamber (등온화용기를 이용한 누설유량 시뮬레이션에 관한 연구)

  • Ji, S.W.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.71-75
    • /
    • 2010
  • Leak detection technology is a challenging research until nowadays, because it has wide and various applications in industry. Furthermore pneumatic component reliability test based on ISO requires air leakage measurement. The conventional measurement methods need a complex operation and the calibration of leak detector. Tracing the history of our study, we proposed a new method for measurement of leak flow rate using isothermal chamber. In this study, propose a simulation model of isothermal chamber by infinitesimal flow -rate, such as a leak flow-rate. The effectiveness of the proposed simulation model is proved by simulation and experimental results. Base on the comparison results, proposed simulation model is good agreement with experimental results.

Development of ABS ECU for a Bus using Hardware In-the-Loop Simulation

  • Lee, K.C.;Jeon, J.W.;Nam, T.K.;Hwang, D.H.;Kim, Y.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1714-1719
    • /
    • 2003
  • Antilock Brake System (ABS) is indispensable safety equipment for vehicles today. In order to develop new ABS ECU suitable for pneumatic brake system of a bus, a Hardware In-the-Loop Simulation (HILS) System was developed. In this HILS, the pneumatic brake system of a bus and antilock brake component were used as hardware. For the computer simulation, the 14-Degree of Freedom (DOF) bus dynamic model was constructed using the Matlab/Simulink software package. This model was compiled and downloaded in the simulation board, where the Power PC processor was used for real-time simulation. Additional commercial package, the ControlDesk was used to monitor the dynamic simulation results and physical signal values. This paper will focus on the procedure and results of evaluating the ECU in the HILS simulation. Two representative cases, wet basalt road and $split-{\mu}$ road, were used to simulate real road conditions. At each simulated road, the vehicle was driven and stopped under the help of the developed ECU. In each simulation, the dynamical behavior of the vehicle was monitored. After enough tests in the laboratory using HILS, the parameter-tuned ECU was equipped in a real bus, which was driven and stopped in the real test field in Korea. And finally, the experiment results of ABS equipped vehicle's dynamic behavior both in HILS test and in test fields were compared.

  • PDF

Analysis of Dynamic Characteristics and Performances of Vent-Relief Valve (산화제 벤트/릴리프 밸브의 동특성 해석 및 작동성능 분석)

  • Jang, Je-Sun;Koh, Hyeon-Seok;Han, Sang-Yeop;Lee, Kyung-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.70-77
    • /
    • 2011
  • A ventilation-relief valve performs as a safety-valve assembly for the liquid-propellant feeding system of space launch vehicle. This valve plays a role of relieving the vaporized propellants from propellant tanks during the filling and storing stages of propellants. Also it regulates to maintain the pressure of ullage volume of on-board propellant tanks within the safety-margin during the flight. The simulation model of ventilation-relief valve is designed with AMESim to predict and evaluate the dynamic characteristics and pneumatic behaviors of valve. To validate a valve simulation model, the simulation results of the opening and closing pressures and their operating durations of valve by AMESim analysis are compared with the results of mathematical methods. In addition, the results of internal flow simulation with FLUENT are utilized to improve the accuracy of valve-modeling. This study will serve as one of reference guides to enhance the developmental efficiency of ventilation-relief valves with the various operating conditionss, which shall be used in Korea Space Launch Vehicle-II.

Application Study of Recoil Mechanism using Friction Springs (마찰스프링의 주퇴복좌장치 적용성 연구)

  • Cha, Ki-Up;Gimm, Hak-In;Cho, Chang-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.324-333
    • /
    • 2012
  • The conventional medium and large caliber gun, in general, utilize the hydro-pneumatic recoil mechanism to control the firing impulse and to return to the battery position. However, this kind of mechanism may cause the problems like the leakages and the property changes in oil and gas due to the temperature variations between low and high temperatures. Accordingly, the friction spring mechanism has recently been researched as an alternative system. The friction spring mechanism consists of a set of closed inner and outer rings with the concentric tapered contact surfaces assembled in the columnar form, and can only be used under the compression load. When the spring column is axially loaded, the tapered surfaces become overlapped, causing the outer rings to expand while the inner rings are being contracted in diameter allowing an axial displacement. Because of friction between tapered contact surfaces, much higher spring stiffness is obtained on the stroke at the increase in load than the stroke at the decrease. In this paper, the dynamic equations regarding the friction spring system and the design approach have been investigated. It is also tried for a dynamic model representing the recoil motion and the friction spring forces. And the model has been proved from firing test using a gun system with friction springs. All the results show that the recoil mechanism using friction springs can substitute for the classic hydro-pneumatic recoil system.

Analysis of the Influence of the Design Factors and Modeling for the 8inch Class Down-the-Hole Hammer (8인치급 다운더홀(DTH) 해머의 모델링 및 설계 인자에 따른 영향도 분석)

  • Lee, Chung No;Hong, Ki Chang;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • The Down-the-Hole hammer is one of the pneumatic drill equipment used for grinding, drilling, and mining. One the advantages of which is that a reduction work efficiency at deep site are relatively small compared to other drilling methods. Due to the large vibration in the underground area, it is difficult to measure the performance of the hammer, and hammer testing requires substantial production cost and operating expenses so research on the development of the hammer is insufficient. Therefore, this study has developed a dynamic simulation model that apprehends the operating principles of an 8-inch DTH hammer and calculates performance data such as performance impact force, piston speed, and BPM. By using the simulation model, design factors related to strike force and BPM were selected, and the influence of each design factors on performance was analyzed through ANOVA analysis. As a result, be the most important for BPM and the strike force are position of upper port that push the piston in the direction of the bit and in BPM, the size of the empty space between the bits and the piston is the second most important design factor.

Numerical Analysis of Wave Energy Extraction Performance According to the Body Shape and Scale of the Breakwater-integrated Sloped OWC

  • Yang, Hyunjai;Min, Eun-Hong;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.296-304
    • /
    • 2021
  • Research on the development of marine renewable energy is actively in progress. Various studies are being conducted on the development of wave energy converters. In this study, a numerical analysis of wave-energy extraction performance was performed according to the body shape and scale of the sloped oscillating water column (OWC) wave energy converter (WEC), which can be connected with the breakwater. The sloped OWC WEC was modeled in the time domain using a two-dimensional fully nonlinear numerical wave tank. The nonlinear free surface condition in the chamber was derived to represent the pneumatic pressure owing to the wave column motion and viscous energy loss at the chamber entrance. The free surface elevations in the sloped chamber were calculated at various incident wave periods. For verification, the results were compared with the 1:20 scaled model test. The maximum wave energy extraction was estimated with a pneumatic damping coefficient. To calculate the energy extraction of the actual size WEC, OWC models approximately 20 times larger than the scale model were calculated, and the viscous damping coefficient according to each size was predicted and applied. It was verified that the energy, owing to the airflow in the chamber, increased as the incident wave period increased, and the maximum efficiency of energy extraction was approximately 40% of the incident wave energy. Under the given incident wave conditions, the maximum extractable wave power at a chamber length of 5 m and a skirt draft of 2 m was approximately 4.59 kW/m.

Position Control of an ER Valve-Cylinder System (ER 밸브-실린더 시스템의 위치 제어)

  • 이효정;정재민;박재석;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.402-405
    • /
    • 1993
  • This paper presents design.dynamic modeling and control issues of a novel type of an ER valve-cylinder system incorporating with an electro-rheological(ER) fluid. The yield stress of the ER fluid to be employed to the proposed system is evaluated as a function of applied electric fields. The design and manufacturing process of the ER valve which features fast system response and simple mechanism are undertaken on the basis of model parameters. The governing equation for the hydraulic and pneumatic model is constructed by incorporation with the field-dependent Bingham behavior of the ER fluid. An effective neuro controller is proposed to realize an accurate position control.

  • PDF

Sliding Mode Control of Electric Booster System (전동 부스터의 슬라이딩 모드 제어)

  • Yang, I-Jin;Choi, Kyu-Woong;Huh, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.519-525
    • /
    • 2012
  • Electric brake booster systems replace conventional pneumatic brake boosters with electric motors and rotary-todisplacement mechanisms including ECU (Electronic Control Unit). Electric booster brake systems require precise target pressure tracking and control robustness because vehicle brake systems operate properly given the large range of loading and temperature, actuator saturation, load-dependent friction. Also for the implement of imbedded control system, the controller should be selected considering the limited memory size and the cycle time problem of real brake ECU. In this study, based on these requirements, a sliding mode controller has been chosen and applied considering both model uncertainty and external disturbance. A mathematical model for the electric booster is derived and simulated. The developed sliding mode controller considering chattering problem has been compared with a conventional cascade PID controller. The effectiveness of the controller is demonstrated in some braking cases.

Behaviour of GFRP composite plate under ballistic impact: experimental and FE analyses

  • Ansari, Md. Muslim;Chakrabarti, Anupam
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.829-849
    • /
    • 2016
  • In this paper, experimental as well as numerical analysis of Glass Fiber Reinforced Polymer (GFRP) laminated composite has been presented under ballistic impact with varying projectile nose shapes (conical, ogival and spherical) and incidence velocities. The experimental impact tests on GFRP composite plate reinforced with woven glass fiber ($0^{\circ}/90^{\circ}$)s are performed by using pneumatic gun. A three dimensional finite element model is developed in AUTODYN hydro code to validate the experimental results and to study the ballistic perforation characteristic of the target with different parametric variations. The influence of projectile nose shapes, plate thickness and incidence velocity on the variation of residual velocity, ballistic limit, contact force-time histories, energy absorption, damage pattern and damage area in the composite target have been studied. The material characterization of GFRP composite is carried out as required for the progressive damage analysis of composite. The numerical results from the present FE model in terms of residual velocity, absorbed energy, damage pattern and damage area are having close agreement with the results from the experimental impact tests.