• Title/Summary/Keyword: Pneumatic Gripping System

Search Result 3, Processing Time 0.02 seconds

A Gripping System Capable of Simultaneous Implementation of Pneumatic Gripper and Vacuum Gripper Using a Single Pump (단일 펌프를 이용하여 공압 그리퍼와 진공 그리퍼의 동시 구현이 가능한 그리핑 시스템의 개발)

  • Tae Hwa Hong;Jae-Bok Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.456-462
    • /
    • 2023
  • In recent years, the use of robot arms has increased rapidly in both industrial and service applications. Unlike production sites, where only one type of gripper is used for productivity, service sites often use a tool changer to replace fingered grippers or vacuum grippers to cover various objects to be grasped. To this end, a tool changer-based pneumatic grasping system was developed in this study. In order to simultaneously use a positive pressure-based pneumatic gripper and a negative pressure-based vacuum gripper, a small vane pump capable of generating positive and negative pressures depending on the direction of rotation was developed. Experiments with actual prototypes have shown that the pneumatic system based on the developed vane pump can effectively realize both pneumatic grippers and vacuum grippers.

A Dual Vacuum Wafer Prealigner and a Multiple Level Structure (2단 진공 웨이퍼 정렬장치 및 다층 구조 설계)

  • Kim, H.T.;Choi, M.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.14-20
    • /
    • 2011
  • This study aims at aligning multiple wafers to reduce wafer handling time in wafer processes. We designed a multilevel structure for a prealigner which can handle multiple wafer simultaneously in a system. The system consists of gripping parts, kinematic parts, vacuum chucks, pneumatic units, hall sensors and a DSP controller. Aligning procedure has two steps: mechanical gripping and notch finding. In the first step, a wafer is aligned in XY directions using 4-point mechanical contact. The rotational error can be found by detecting a signal in a notch using hall sensors. A dual prealigner was designed for 300mm wafers and constructed for a performance test. The accuracy was monitored by checking the movement of a notch in a machine vision. The result shows that the dual prealigner has enough performance as commercial products.

Non-Contact Pick-up System for Turning Large Flexible Thin Sheets (대형 유연박판 회전이송용 비접촉 파지시스템 설계)

  • Kim, Joon Hyun;Ahn, Sung Wook;Lee, Se Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.435-442
    • /
    • 2014
  • This paper describes an improved design model that can be used to configure a non-contact pneumatic device to turn a large sheet at the in-line system. For rotational moving in the conveyor system, the conventional method is to turn the system itself. The improved non-contact pick-up system mainly uses 8 pairs of L-shaped latches and 12 swirl type heads. It is positioned above the upward air flow table. This system performs the non-contact gripping and side-edge contact support in the vertical and rotational directions to hold the self-weight of a large flat sheet. A non-contact air head can exert a sufficient gripping ability at 4N lower than the standard working pressure. The side latches support 60% of the lifting force required. Through structural and flow analysis, the working conditions were simultaneously considered in accordance with the deflection and flatness of the glass.