• Title/Summary/Keyword: Pneumatic Control System

Search Result 296, Processing Time 0.029 seconds

Direct Adaptive Control for Trajectory Tracking Control of a Pneumatic Cylinder (공기압 실린더의 궤적 추적 제어를 위한 직접 적응제어)

  • Lee, Su-Han;Jang, Chang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2926-2934
    • /
    • 2000
  • This study presents a direct adaptive controller which is derived by using Lyapunovs direct methods for trajectory tracking control of a pneumatic cylinder. The structure of the controller is very simple and computationally efficient because it does not use either the dynamic model or the parameter values of the pneumatic system. The bounded stability of the system is shown in the presence of the bounded unmodeled dynamics. The bounded size of tracking errors can be made arbitrarily small without giving andy influences on either input or output variables. The trajectory tracking performance and the stability of the control system is verified experimentally. The results of the experiments show that the proposed controller tracks the given trajectories, sine function and cycloidal function trajectories, more accurately than PD controller does, and it stabilizes the system and adaptive variables.

Study on the Effective Operating Method on-off Valves of Pneumatic Servo System (개폐식 밸브를 사용한 공압 서보 시스템의 효율적 밸브 개폐에 관한 연구)

  • 황웅태;최서호;이정오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.820-825
    • /
    • 1996
  • This paper is concerned with effective operating method of pneumatic on-off valves for improving position control accuracy, valve life-time and position settling time using modified pulse width modulation with dead-zone. The pneumatic system using on-off valves studied in this paper has advantage of simple construction and low cost compared with a system with servo-valves. The performance of proposed control system is investigated experimentally for the position control of a pneumatic cylinder using on-off valves. Experimental results show that the proposed algorithm for valve operation can be used to obtain fast and accurate position control and to prevent on-off valves from unnecessary switching.

  • PDF

Development of a Pneumatic Actuation System Real-Time Simulator Using a DSP Board and PC (DSP 카드 및 PC에 의한 공압구동장치의 실시간 모의시험기 개발)

  • Lee, Seong-Rae;Shin, Hyo-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.320-326
    • /
    • 2000
  • The real-time simulator of a pneumatic actuation system that is composed of differential PWM signal generator, charge solenoid valve, discharge solenoid valve, actuator, load, and rotational potentiometer is developed using a DSP board and a PC. The simulator receives the control signals from the external controller through the A/D converter, updates the state and output variables of the Pneumatic actuation system responding to the input signals every sampling time, and sends out the output signals through the D/A converter in real time. The user can observe the displacements, velocities, pressures, and mass flows representing the operation of pneumatic actuation system through the PC monitor in real time. Also the user can see the moving images between the pistons and rotating arm realistically in real time. The accuracy of the real-time simulator is verified by the good agreement of the real-time simulation results and the experimental results of the pneumatic actuation system.

  • PDF

A Skeletal Framework Artificial Hand Actuated by Micro Pneumatic Artificial Muscles

  • Lee, Young-Kwun;Oh, Yeon-Taek;Sung, Hak-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.36.2-36
    • /
    • 2002
  • .Developing a skeletal framework artificial hand similar to real human hand. .Developing a micro artificial muscle actuated by pneumatic power. .Building a micro pneumatic system including micro atuators and its control devices. .Building a soft driving system for Service robots. .Designning and Fabricating a multi-channel micro pneumatic valve using MEMS technology.

  • PDF

Trajectory Tracking Control of Pneumatic Artificial Muscle Driving Apparatus based on the Linearized Model (공압 인공근육 구동장치의 선형화 모델 기반 궤적추적제어)

  • Jang, J.S.;Yoo, W.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-103
    • /
    • 2006
  • In this study, a position trajectory tracking control algorithm is proposed for a pneumatic artificial muscle driving apparatus composed of a actuator which imitates the muscle of human, a position sensor and a control valve. The controller applied to the driving apparatus is composed of a state feedback controller and disturbance observer. The feedback controller which feeds back position, velocity and acceleration is derived from the linear model of pneumatic artificial muscle driving apparatus. The disturbance observer is designed to improve trajectory tracking performance and to reduce the effect of model discrepancy. The effectiveness of the designed controller is proved by experiments and the experimental results show that the pneumatic artificial muscle driving apparatus with the proposed control algorithm tracks given position reference inputs accurately.

  • PDF

Multiple Simultaneous Specification Control of Antagonistic Actuation by Pneumatic Artificial Muscles (공압형 인공근육으로 구동되는 상극구동의 다중 동시 사양 제어)

  • Kang, Bong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a frequency-response test performed on an antagonistic actuation system consisting of two Mckibben pneumatic artificial muscles and a pneumatic circuit. A linear model, capable of estimating the dynamic characteristics of the antagonistic system in the operating range of pneumatic artificial muscles, was optimally calculated based on frequency-response results and applied to a multiple simultaneous specification control scheme. Trajectory tracking results showed that the presented multiple simultaneous specification controller, built experimentally by three PD typed sample controllers, satisfied successfully all required control specifications; rising time, maximum overshoot, steady-state error.

Pneumatic Cylinder Position Control Algorithm for Control Consistency (공기압 실린더의 위치제어 일관성을 위한 제어 알고리즘)

  • Lee, Ji-Hoon;Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.985-990
    • /
    • 2007
  • This paper presents a novel control algorithm for position control of pneumatic cylinder. Generally, it is difficult to control the pneumatic servo system, due to nonlinearities such as air compressibility, the opening area of the valve, and frictional force between the cylinder and the piston. Especially, it is of significant importance for the control consisten-cy to return the cylinder pressures at equilibrium point to the initial states, still with guaranteeing the continuity of the pressures. For this purpose, the proposed control algorithm makes pressures of both cylinder chambers identical in magnitude but different in direction. The effectiveness and practicability of the control algorithm for the precise position control of the pneumatic cylinder are verified through the simulation study.

  • PDF

Digital Positioning Control of Pneumatic Cylinder System with Elastic and Viscous Load (탄성 및 점성 부하시 공기압 실린더 시스템의 디지털 위치 제어)

  • 박명관;문영진;편창관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.137-144
    • /
    • 1998
  • For a model system consisted of four pneumatic cylinders with strokes of 10, 20, 40 and 80 mm, investigation was carried out experimentally and numerically about the reliability of system with elastic and viscous load. The elastic load affects the performance of each cylinder in cylinder series, and changes the time lag and the velocity of the piston which makes the positioning control rather difficult. Taking the effects of the elastic load into consideration, positioning can be carried out comparatively smoothly by only adjusting the driving timing. The effect of a viscous load reduces the vibration of each moving body in the cylinder series and also reduces the over-travelled distance which happens when several cylinders move at the same time. For reasons, a positioning with a viscous load can be relatively smoothly carried out even without the timing control.

  • PDF

Design of a Robust Controller for a Watertight Damper Driving System (수밀댐퍼 구동장치의 강인제어에 관한 연구)

  • Han, Seung Hun;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.45-51
    • /
    • 2017
  • Semi-submersible drilling rigs are offshore plants that perform functions such as ocean exploration for oil and gas acquisition, drilling and production, and storage and unloading of crude oil and gas. Semi-submersible drilling rigs use watertight dampers as emergency buoyancy holders. Since the watertight damper is an emergency shutoff device, it is mainly driven by a pneumatic driving system that can operate without a power supply. The pneumatic driving system has highly non-linear characteristics due to compressibility of air and external disturbance such as static and Coulomb friction. In this paper, a new control algorithm is proposed for a watertight damper driving system based on the sliding mode control with a disturbance observer. To evaluate control performance and robust stability of the designed controller, the control results were compared with the results obtained using the state feedback controller. As a result, it was confirmed that the pneumatic driving system for driving the watertight damper using the sliding mode controller with a disturbance observer can obtain excellent control performance against the parameter changes and the disturbance input.

Development of the Serial Data Transmission System for Pneumatic Valve System Control

  • Kim, Dong-Soo;Choi, Byung-Oh;Seo, Hyun-Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1152-1156
    • /
    • 2003
  • For pneumatic valve system control, we need a serial data transmission system with high speed and reliability for information interchange between main computer and I/O devices. This paper presents a set of design techniques for a data communication system that is mainly used for pneumatic valve system control. For this purpose, we first designed hardware modules for an interface between central control module and local node that handles the operation of solenoid control valves. in addition, we developed a communication protocol for construction of rs-485 based multi-drop network and this protocol is basically designed with a kind of polling technique. Finally we evaluated performance of the developed system. the field test results show that, even under high noise environment, the data transmission of 375kbps rate is possible up to 1,500meter without using repeater. In addition, the system developed in this research is easily to be extended for a communication network because of its modular structure.

  • PDF