• 제목/요약/키워드: Pneumatic Control

검색결과 425건 처리시간 0.029초

MPWM을 이용한 공압 실린더의 지능제어 (Intelligent control of pneumatic actuator using MPWM)

  • 송인성;표성만;안경관;양순용;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.530-535
    • /
    • 2002
  • Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.

  • PDF

리커런트 신경회로망을 이용한 공압 로드레스 실린더의 정밀위치제어 (The Precision Position Control of the Pneumatic Rodless Cylinder Using Recurrent Neural Networks)

  • 노철하;김영식;김상희
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.84-90
    • /
    • 2003
  • This paper develops a control method that is composed of the proportional control algorithm and the learning algorithm based on the recurrent neural networks (RNN) for the position control of a pneumatic rodless cylinder. The proportional control algorithm is suggested for the modeled pneumatic system, which is obtained easily simplifying the system, and the RNN is suggested for the compensation of the modeling errors and uncertainties of the pneumatic system. In the proportional control, two zones are suggested in the phase plane. One is the transient zone for the smooth tracking and the other is the small movement zone for the accurate position control with eliminating the stick-slip phenomenon. The RNN is connected in parallel with the proportional control for the compensation of modeling errors and frictions, compressibilities, and parameter uncertainties in the pneumatic control system. This paper experimentally verifies the feasibility of the proposed control algorithm for such pneumatic systems.

공압매니퓰레이터의 임피던스제어를 위한 마찰보상법 (Friction Compensation for Impedance Control of Pneumatic Manipulator)

  • 박정규
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.252-260
    • /
    • 1997
  • In this paper, a friction compensation method using a disturbance observer is proposed for an impedance control of pneumatic manipulator. It is assumed that the generated torque by a pneumatic actuator can be estimated based on the pressure signals and the discharge volume. In order to improve the dynamic characteristics of the pneumatic actuator driven by meter out method, we construct the inner torque control system by feeding back the generated torque. In order to reduce the influence of disturbances comprising friction torque and parameter variations of plant, the impedance control system is constructed with a disturbance observer which estimates the disturbances based on the generated torque of pneumatic actuator, the angular velocity and the reaction torque. From some experiments, it is confirmed that the proposed control system is effective to improve the robustness for the friction torque in the impedance control of a pneumatic manipulator.

Ball-Handling Control of 14-DOF Pneumatic Dual Manipulator by Position Based Impedance Control

  • Nagata, Masanobu;Ohtomo, Atsushi;Iwai, Zenta;Uchida, Hiroya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.1-7
    • /
    • 1998
  • Robots utilized in the field of welfare or agriculture should be light in weight and flexible in structure. A pneumatic actuator has properties such that it is more powerful compared with a motor of same weight, and that it is flexible, clean and unexplosive. In this paper we propose a new structure of the pneumatic actuator with two-degree-of-freedom. By using proposed pneumatic actuators, we can easily construct multi-degree-of-freedom pneumatic manipulators. Here we constructed a fourteen-degree-of-freedom pneumatic dual manipulator. The performance of the dual manipulators is confirmed through experiments for ball-handling with impedance control. In the experiments several control schemes, including the decentralized control and the simple adaptive control (SAC), were used. The results show that a flexibility of the pneumatic actuator is appropriate to accomplish the coordinative motion of the right and left arms of the robot.

  • PDF

학습벡터양자화 뉴럴네트워크를 이용한 공압 인공 근육 로봇의 지능 스위칭 제어 (Intelligent Switching Control of a Pneumatic Artificial Muscle Robot using Learning Vector Quantization Neural Network)

  • 윤홍수;안경관
    • 한국정밀공학회지
    • /
    • 제26권4호
    • /
    • pp.82-90
    • /
    • 2009
  • Pneumatic cylinder is one of the low cost actuation sources which have been applied in industrial and prosthetic application since it has a high power/weight ratio, a high-tension force and a long durability However, the control problems of pneumatic systems, oscillatory motion and compliance, have prevented their widespread use in advanced robotics. To overcome these shortcomings, a number of newer pneumatic actuators have been developed such as McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle (PAM) Manipulators. In this paper, one solution for position control of a robot arm, which is driven by two pneumatic artificial muscles, is presented. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external load of the robot arm. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is proposed in this paper. This estimates the external load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external working loads.

시간지연 제어기법을 이용한 공압 제진대의 저주파 영역에서의 진동 절연 성능 향상 (Performance Enhancement of Pneumatic Vibration Isolator in Low Frequency by Time Delay Control)

  • 오기용;신윤호;이정훈;김광준
    • 한국소음진동공학회논문집
    • /
    • 제16권11호
    • /
    • pp.1100-1107
    • /
    • 2006
  • As environmental vibration requirements on precision equipment become more stringent, use of pneumatic isolators has become more popular and their performance is subsequently required to be further improved. Performance of passive pneumatic isolators is related to various design parameters in a complicated manner and, hence, is very limited especially in low frequency range by chamber volume. In this study, transmissibility behavior of the pneumatic isolators depending on frequency and dynamic amplitude are presented. Then, an active control technique, time delay control, which is adequate for a low frequency nonlinear system, is applied. A procedure of applying the time delay control law to a pneumatic isolator is presented and it's effectiveness in the transmissibility performance is shown. Comparison between passive and active pneumatic isolators is made based on simulation.

공압능동제어를 이용한 저주파 영역에서의 공압제진대 제진성능 개선에 대한 연구 (Performance Enhancement of Pneumatic Vibration Isolation Tables in Low Frequency by Active Control)

  • 오기용;이정훈;김광준;신윤호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.903-908
    • /
    • 2006
  • As environmental vibration requirements on precision equipment become more stringent. use of pneumatic isolators has become more popular and their performance is subsequently required to be further improved. Dynamic performance of passive pneumatic isolators is related to various design parameters in a complicated manner and, hence, is very limited especially in low frequency range by volume of chambers. In this study, an active control technique, so called time delay control which is considered to be adequate for a low frequency or nonlinear system, is applied to a single chamber pneumatic isolator. The procedure of applying the time delay control law to the pneumatic isolator is presented and its effectiveness in enhancement of transmissibility performance is shown based on simulation and experiment. Comparison between passive and active pneumatic isolators is also presented.

  • PDF

시간지연 제어기법을 이용한 공압 제진대의 저주파 영역에서의 진동 절연 성능 향상 (Performance Enhancement of Pneumatic Vibration Isolator in Low Frequency by Time Delay Control)

  • 오기용;신윤호;이정훈;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.837-843
    • /
    • 2006
  • As environmental vibration requirements on precision equipment become more stringent, use of pneumatic isolators has become more popular and their performance is subsequently required to be further improved. Performance of passive pneumatic isolators is related to various design parameters in a complicated manner and, hence, is very limited especially in low frequency range by chamber volume. In this study, transmissibility behavior of the pneumatic isolators depending on frequency and dynamic amplitude are presented. Then, an active control technique, time delay control, which is adequate for a low frequency nonlinear system, is applied. A procedure of applying the time delay control law to a pneumatic isolator is presented and it's effectiveness in the transmissibility performance is shown. Comparison between passive and active pneumatic isolators is made based on simulation.

  • PDF

정밀 위치제어를 위한 공압 피스톤의 미소변위 이송방법 및 혼합 제어 알고리즘 개발 (Development of the Small-displacement-movement of a Pneumatic piston and the Hybrid Control Algorithm for Precision Position Control)

  • 노철하;김영식
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.40-45
    • /
    • 2001
  • This paper proposes a methodology for the small-displacement-movement of a piston and develops a hybrid control algorithm for the precision position control of a pneumatic rodless cylinder. The pneumatic system uses the voltage-proportional solenoid valves to minimum valve switching since the on/off type valves are create diffculties for accurate position control and induce a lot of valve switching. For the accurate position control a methodology for the small-displacement-movement of the piston is developed and identified experimentally. The main consideration on the development of the hybrid control law is to eliminate a stick-slip phenomenon in the pneumatic control system. This paper addresses these critical issues and presents experimental results for the pneumatic control system.

  • PDF

마찰력 보상을 고려한 공기압 실린더의 위치제어 (Position Control of a Pneumatic Cylinder Considering Friction Compensation)

  • 김도태;장중걸
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2013
  • The paper describes a technique that compensates a friction in pneumatic cylinder to perform the position control. The friction is one of the most common nonlinearities present in pneumatic actuating systems. For accurate position control and low velocity control, control strategies usually rely on accurate estimation of friction. This paper presents a observer to estimate the friction force in the pneumatic cylinder from the pressures in cylinder chambers. Also, the stiction compensation of a pneumatic cylinder is obtained by adding pulses to the control signal using impulsive control. The characteristics of the pulses in impulsive control are determined from the control action. The simulation results are proved that the method proposed here is effective.