• Title/Summary/Keyword: Pneumatic Artificial

Search Result 42, Processing Time 0.038 seconds

Dynamic Characteristics of an Antagonistic Actuation with Pneumatic Artificial Muscles (공압형 인공근육을 이용한 상극구동의 동적 특성)

  • Kang, Bong-Soo;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1081-1086
    • /
    • 2009
  • This paper presents dynamic characteristics of pneumatic artificial muscles. Since the actuating performance of a pneumatic muscle is closely related to the input pressure of a pneumatic muscle, the air flow model on a valve orifice and an elastic bladder of the muscle is formulated to estimate precisely the pressure variance of pneumatic muscles during deflating and inflating process. Frequency response experiments are performed with an antagonistic system consisting of two pneumatic muscles and fast pneumatic control valves. Comparing with experimental results, the proposed model yielded good performance in estimating dynamic motions of the antagonistic system as well as the pressure variance of the pneumatic artificial muscles

Intelligent Switching Control of a Pneumatic Artificial Muscle Robot using Learning Vector Quantization Neural Network (학습벡터양자화 뉴럴네트워크를 이용한 공압 인공 근육 로봇의 지능 스위칭 제어)

  • Yoon, Hong-Soo;Ahn, Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.82-90
    • /
    • 2009
  • Pneumatic cylinder is one of the low cost actuation sources which have been applied in industrial and prosthetic application since it has a high power/weight ratio, a high-tension force and a long durability However, the control problems of pneumatic systems, oscillatory motion and compliance, have prevented their widespread use in advanced robotics. To overcome these shortcomings, a number of newer pneumatic actuators have been developed such as McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle (PAM) Manipulators. In this paper, one solution for position control of a robot arm, which is driven by two pneumatic artificial muscles, is presented. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external load of the robot arm. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is proposed in this paper. This estimates the external load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external working loads.

Intelligent Switching Control of the Pneumatic Artificial Muscle Manipulators

  • Ahn, Kyoung-Kwan;Thanh, TU Diep Cong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.76-81
    • /
    • 2004
  • Problems with the control, oscillatory motion and compliance of pneumatic systems have prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, ease of maintenance and inherent safety are factors that could be potentially exploited in sophisticated dexterous manipulator designs. These advantages have led to the development of novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle Manipulators. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external inertia load in the pneumatic artificial muscle manipulator. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is newly proposed. This estimates the external inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external inertia loads.

  • PDF

Improvement of the Control Performance of Pneumatic Artificial Muscle Manipulators Using an Intelligent Switching Control Method

  • Ahn, Kyoung-Kwan;Thanh, TU Diep Cong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1388-1400
    • /
    • 2004
  • Problems with the control, oscillatory motion and compliance of pneumatic systems have prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, ease of maintenance and inherent safety are factors that could be potentially exploited in sophisticated dexterous manipulator designs. These advantages have led to the development of novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle Manipulators. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external inertia load in the pneumatic artificial muscle manipulator. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is newly proposed. This estimates the external inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external inertia loads.

A Skeletal Framework Artificial Hand Actuated by Micro Pneumatic Artificial Muscles

  • Lee, Young-Kwun;Oh, Yeon-Taek;Sung, Hak-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.36.2-36
    • /
    • 2002
  • .Developing a skeletal framework artificial hand similar to real human hand. .Developing a micro artificial muscle actuated by pneumatic power. .Building a micro pneumatic system including micro atuators and its control devices. .Building a soft driving system for Service robots. .Designning and Fabricating a multi-channel micro pneumatic valve using MEMS technology.

  • PDF

Trajectory Tracking Control of Pneumatic Artificial Muscle Driving Apparatus based on the Linearized Model (공압 인공근육 구동장치의 선형화 모델 기반 궤적추적제어)

  • Jang, J.S.;Yoo, W.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-103
    • /
    • 2006
  • In this study, a position trajectory tracking control algorithm is proposed for a pneumatic artificial muscle driving apparatus composed of a actuator which imitates the muscle of human, a position sensor and a control valve. The controller applied to the driving apparatus is composed of a state feedback controller and disturbance observer. The feedback controller which feeds back position, velocity and acceleration is derived from the linear model of pneumatic artificial muscle driving apparatus. The disturbance observer is designed to improve trajectory tracking performance and to reduce the effect of model discrepancy. The effectiveness of the designed controller is proved by experiments and the experimental results show that the pneumatic artificial muscle driving apparatus with the proposed control algorithm tracks given position reference inputs accurately.

  • PDF

Multiple Simultaneous Specification Control of Antagonistic Actuation by Pneumatic Artificial Muscles (공압형 인공근육으로 구동되는 상극구동의 다중 동시 사양 제어)

  • Kang, Bong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a frequency-response test performed on an antagonistic actuation system consisting of two Mckibben pneumatic artificial muscles and a pneumatic circuit. A linear model, capable of estimating the dynamic characteristics of the antagonistic system in the operating range of pneumatic artificial muscles, was optimally calculated based on frequency-response results and applied to a multiple simultaneous specification control scheme. Trajectory tracking results showed that the presented multiple simultaneous specification controller, built experimentally by three PD typed sample controllers, satisfied successfully all required control specifications; rising time, maximum overshoot, steady-state error.

Adaptive Control for Trajectory Tracking of a Manipulator with Pneumatic Artificial Muscle Actuators (공압인공근육로봇의 궤적추종의 적응제어)

  • Park, H.W.;Park, N.C.;Yang, H.S.;Park, Y.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.100-107
    • /
    • 1997
  • A pneumatic artificial muscle type of actuator, which acts similar to human muscle, is developed recently. In this paper, an adaptive controller is presented for the trajectory tracking problem of a two-degree- of-freedom manipulator using two pairs of pneumatic artificial muscle actuators. Due to the nonlinearity and the uncertainty on the dynamics of the actuator, it is difficult to make the effective control schemes of this system. By the adaptive control law which inclueds a nonlinear "feedforward" term compensating paramet- ric uncertainties in addition to P.I.D. scheme, both golbal stability of the system and convergence of the tracking error are guaranted. The effectiveness of the proposed control method for the manipulator using this actuator is illustrated through experiments.periments.

  • PDF

Intelligent control of pneumatic actuator using MPWM (MPWM을 이용한 공압 실린더의 지능제어)

  • 송인성;표성만;안경관;양순용;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.530-535
    • /
    • 2002
  • Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.

  • PDF

Hemodynamic study of Pneumatic Artificial Heart Implanted in Calves (송아지에 이식한 공기구동형 인공심장의 혈역학적 연구)

  • 박표원
    • Journal of Chest Surgery
    • /
    • v.23 no.3
    • /
    • pp.438-451
    • /
    • 1990
  • Pneumatic total artificial heart[TAH] has been clinically applied for the purpose of permanent or temporary use followed by cardiac transplantation in the patients with end stage heart diseases. In spite of the good durability of the pneumatic TAH, thrombus formation, bleeding and infection resulted in death. The Tomasu heart, which is a type of pneumatic TAH, was used in this study. This model is a modified Jarvik heart and consists of atrial cuffs, outflow vascular grafts and thin-layer seamless diaphragm type of ventricles. Cardiac outputs of the left artificial heart were measured by Donovan`s mock circulation under variable conditions of driving parameters, and an experimental artificial heart implantation was performed in 4 calves to observe the changes of hemodynamic parameters in early postoperative period and hematologic and bio-chemical changes in a long-term survival case. In the mock circulation test, cardiac output of the heart was increased with the increase of the left atrial pressure and left driving pressure. Maximum cardiac output was obtained at the heart rate of 120 to 130/min and percent systole of 40 to 45Zo under the condition of a constant left driving pressure of 180mmHg and left atrial pressure of 10mmHg. During the first 24 hours of TAH pumping, driving pressure ranged from 178$\pm$5mmHg to 187$\pm$8mmHg for the left heart and from 58$\pm$6mmHg to 78$\pm$28mmHg for the right heart. The Mean arterial pressure significantly increased between 2 and 8 hours after the start of pumping. The survival time ranged from 27 hours to 46 days. The causes of death were respiratory failure in 2 cases, mechanical valve failure in one, and left ventricular outflow obstruction due to thrombus in a 46-day survival case. This study demonstrated that Tomasu artificial heart operated effectively during the first 24 hours of artificial heart pumping, but thrombus formation around the valve holding area was the main problem in long-term survival case.

  • PDF