• Title/Summary/Keyword: Pmsm

Search Result 644, Processing Time 0.025 seconds

Stator Resistance Estimation of Permanent Magnet Synchronous Motor by using Kalman Filter (칼만 필터를 이용한 영구자석 동기 전동기의 고정자 저항값 검출 방법)

  • Hwang, Sangjin;Lee, Dongmyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.92-98
    • /
    • 2019
  • Accurate estimation of motor parameters is required in some motor control applications. For example, the value of stator resistance is required for stator flux-oriented control mostly used in doubly fed induction generator systems. Stator resistance is not a constant value and continuously changes due to the rise in temperature during motor operation. Estimation errors degrade the control performance. Hence, this study proposes a simple stator resistance estimation method. In this scheme, the differential components of voltage and current values are used to eliminate the dead-time effect, and Kalman filter algorithm is applied to reduce the error according to measurement noise. Simulation and experimental results obtained with a permanent magnet motor show the validity of the proposed algorithm.

Improvement of Overmodulation Performances by Voltage Feedback Compensation (전압 피드백 보상에 의한 과변조 성능 향상)

  • Jeong, Hye-In;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.181-182
    • /
    • 2018
  • 본 논문에서는 전압 피드백 보상에 의한 동적 과변조 기법의 성능 향상 방법을 제안한다. 전동기 구동 시스템에서 인버터는 선형 변조 영역에서 동작할 경우 단순히 전압 이득이 1인 전압 증폭기로 볼 수 있다. 그러나 과변조 영역에서는 기존의 동적 과변조 기법 적용 시 지령 전압에 대한 인버터 출력 전압의 비선형성으로 인해 전압 이득이 1보다 작아진다. 따라서 과변조 성능이 저하되는데 본 논문에서는 제한된 전압을 피드백 보상하여 과변조 성능을 향상시켰다. 이로 인해 구동 전동기의 출력 토크 성능 및 전류 제어 동특성이 향상될 수 있다. 제안된 방법을 800W PMSM(Permanent Magnet Synchronous Motor)의 약자속 제어에 적용하여 그 효용성을 확인하였다.

  • PDF

Temperature Estimation of PMSM Based on Artificial Neural Network (인공 신경망에 기반한 영구자석 동기기의 온도 추정)

  • Choi, Jong Hun;Lee, Jun;Ha, Jung-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.187-188
    • /
    • 2018
  • 본 논문에서는 영구자석 동기 전동기의 온도 변화를 인공신경망을 통해 예측 및 추정하는 방법을 제시한다. 고정자와 회전자의 온도와 속도, 토크를 입력으로 하여 다음 샘플링 주기까지의 온도 변화를 출력하는 인공 신경망이 제시되었다. 여러 운전점에서 수집된 온도 데이터를 사용하여 훈련된 신경망은 임의의 온도를 시작 온도로 설정하고 출력인 온도 변화를 적분하여 현재의 온도를 추정한다. 제시된 방식은 시뮬레이션을 통해 검증되었고 훈련에 사용되지 않았던 운전경로에 대해 항상 $2^{\circ}C$ 이하의 추정 오차 성능을 보였다.

  • PDF

Robust Predictive Speed Control for SPMSM Drives Based on Extended State Observers

  • Xu, Yanping;Hou, Yongle;Li, Zehui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.497-508
    • /
    • 2019
  • The predictive speed control (PSC) strategy can realize the simultaneous control of speed and current by using one cost function. As a model-based control method, the performance of the PSC is vulnerable to model mismatches such as load torque disturbances and parameter uncertainties. To solve this problem, this paper presents a robust predictive speed control (RPSC) strategy for surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed RPSC uses extended state observers (ESOs) to estimate the lumped disturbances caused by load torque changes and parameter mismatches. The observer-based prediction model is then compensated by using the estimated disturbances. The introduction of ESOs can achieve robustness against predictive model uncertainties. In addition, a modified cost function is designed to further suppress load torque disturbances. The performance of the proposed RPSC scheme has been corroborated by experimental results under the condition of load torque changes and parameter mismatches.

Sensorless Speed Control of PMSM for Driving Air Compressor with Position Error Compensator (센서리스 위치오차보상기능을 가지고 있는 공기압축기 구동용 영구자석 동기모터의 센서리스 속도제어)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.104-111
    • /
    • 2018
  • The sensorless control of high efficiency air compressors using a permanent magnet type synchronous motor as an oil-free air compressor is quite common. However, due to the nature of the air compressor, it is difficult to install a position sensor. In order to control the permanent magnet type synchronous motor at variable speed, the inclusion of a position sensor to grasp the position of the rotor is essential. Therefore, in order to achieve sensorless control, it is essential to use a permanent magnet type synchronous motor in the compressor. The position estimation method based on the back electromotive force, which is widely used as the sensorless control method, has a limitation in that position errors occur due either to the phase delay caused by the use of a stationary coordinate system or to the estimated back electromotive force in the transient state caused by the use of a synchronous coordinate system. Therefore, in this paper, we propose a method of estimating the position and velocity using a rotation angle tracking observer and reducing the speed ripple through a disturbance observer. An experimental apparatus was constructed using Freescale's MPU and the feasibility of the proposed algorithm was examined. It was confirmed that even if a position error occurs at a certain point in time, the position correction value converges to the actual vector position when the position error value is found.

Comparative Analysis of Driving Methods According to Electrical Conduction Angle of Inverter for PMSM (영구자석형 동기전동기 구동용 인버터의 통전각에 따른 운전 방식의 비교 분석)

  • Lee, Seung-Yong;Yoon, Duck-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.72-81
    • /
    • 2018
  • In this study, the sinusoidal-wave driving method, six-step driving method, and twelve-step driving method, which can be used in an inverter for permanent-magnet synchronous motors, were simulated, and the results were compared to review their operating performance. These driving methods were classified according to the electrical conduction angle and phase current of the motor. Conventionally, only the transition control technique between the sinusoidal-wave driving method and six-step driving method was studied for the efficiency of the inverter. In this paper, however, comparative analysis was focused on a variety of transition control applications to use the advantages of each driving method. For this purpose, computer simulations for these driving methods were carried out to obtain the motor torque, speed control characteristics, and THD of the motor phase currents. As a result, the sinusoidal-wave driving method showed the best performance in all respects. The six-step driving method has better speed control characteristics than the twelve-step driving method, and the twelve-step driving method has a lower THD of the motor phase currents than the six-step driving method.

Electrical Characteristics and Electromagnetic Excitation Force Comparison of PM Motor according to the Driving method (영구자석형 전동기의 구동방법에 따른 전기적 특성 및 전자기적 가진원 분석)

  • Lee, Su-Jin;Kim, Do-Jin;Lee, Byeong-Hwa;Hong, Jung-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.144-151
    • /
    • 2013
  • This paper presents a result of the mechanical noise and vibration analysis as well as the electrical characteristics analysis of the permanent magnet(PM) motor according to the driving method that is Brushless DC(BLDC) drive and Brushless AC(BLAC) drive. To do that, the characteristics of the PM motor, which have the same output power but different driving method, are investigated. At that time, the characteristics such as torque, torque ripple and flux density, and so on, are obtained by finite element analysis(FEA). Besides, noise and vibration are obtained by spectrum analysis. The magnetic noise is defined as noise generated from vibrations due to electromagnetic excitation force. In this paper, the electromagnetic excitation force is analyzed and design process of noise reduction is proposed. Finally, The validity of the analysis results is verified by test.

Characteristic Analysis of Integrated Power System and Propulsion Motor Comparison for Electric Vessels According to the Driving Condition (전기추진선박의 운전조건별 전력특성 및 추진전동기 특성 비교 해석)

  • Lee, Sang-Gon;Jeong, Yu-Seok;Jung, Sang-Yong;Lee, Cheol-Gyun
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.96-103
    • /
    • 2011
  • This paper deals with the characteristic analysis of the integrated power system applied for the electric propulsion ships. This includes the electric power system modeling which is accomplished with the electric power network mainly composed of generators, switchboards, variable frequency devices, electric motors, and etc. In addition, performance comparison between the permanent magnet synchronous motor (PMSM) and the induction motor (IM) for 3.7MW ship propulsion has been done. In order to investigated the main performance of propulsion motor, a coupled model taking into account torque density, copper loss, iron loss, efficiency, power factor, and torque ripple using finite element analysis (FEA) has been employed.

A Hybrid Modulation Strategy with Reduced Switching Losses and Neutral Point Potential Balance for Three-Level NPC Inverter

  • Jiang, Weidong;Gao, Yan;Wang, Jinping;Wang, Lei
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.738-750
    • /
    • 2017
  • In this paper, carrier-based pulse width modulation (CBPWM), space vector PWM (SVPWM) and reduced switching losses PWM (RSLPWM) for the three-level neutral point clamped (NPC) inverter are introduced. In the case of the neutral point (NP) potential (NPP) offset, an asymmetric disposition PWM (ASPDPWM) strategy is proposed, which can output PWM sequences correctly and suppress the lower order harmonics of the inverter effectively. An NPP balance strategy based on carrier based PWM (CBPWM) is analyzed. A hybrid modulation strategy combining RSLPWM and the NPP balance based on CBPWM is proposed, and hysteresis control is adopted to switch between the two modulation strategies. An experimental prototype of the three-level NPC inverter is built. The effectiveness of the hybrid modulation is verified with a resistance-inductance load and a permanent magnetic synchronous motor (PMSM) load, respectively. The experimental results show that reduced switching losses and an acceptable NPP can be effectively achieved in the hybrid modulation strategy.

Analysis on Harmonic Loss of IPMSM for the Variable DC-link Voltage through the FEM-Control Coupled Analysis

  • Park, Hyun Soo;Jeung, Tae Chul;Lee, Jae Kwang;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.225-229
    • /
    • 2017
  • This paper describes the loss analysis based on load conditions of the air conditioning compressor motors using variable dc-link voltage. The losses of PMSM (Permanent Magnet Synchronous Motor) should be analyzed by the PWM (Pulse Width Modulation) output of inverter. The harmonic loss by the PWM cannot consider that using the current source analysis of the inverter. In addition, when the voltage of dc-link is variable with the condition of variable speed and load conditions in motor, the losses of motor are also changeable, however it is hard to analyze those losses by only electromagnetic finite element method (FEM). Therefore, this paper proposes the analysis method considering the carrier frequency of the inverter and the varying state of the dc-link voltage through the FEM-control coupled analysis. Using proposed analysis method, additional core loss and eddy current loss of permanent magnet caused by PWM could be analyzed. Finally, the validity of the proposed analysis method is verified through the comparison the result of coupled analysis with experiment.