• 제목/요약/키워드: Ply orientation

검색결과 96건 처리시간 0.02초

복합재 내압선체의 좌굴압력에 관한 유한요소해석 (Finite Element Analysis on Buckling Pressure of Composite Pressure Hull)

  • 조종래;정해영;권진회;최진호;조윤식
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.212-213
    • /
    • 2005
  • The results of an experimental and analytical study of composite pressure hull on buckling pressure are presented for URN 300. We predicted the buckling and post buckling analysis of composite laminated cylindrical shell and panel under external compression by using ABAQUS/Standard[Ver 6.4]. To obtain nonlinear static equilibrium solutions for unstable problems, where the load-displacement response can exhibit the type of nonlinear buckling behavior, during periods of the response, the load and/or the displacement may decrease as the solution evolves, used the modified Riks method. Experiments were conducted to verify the validation of present analysis for cross-ply laminated shells. The shells considered in the study have four different lamination patterns, [${\pm}{\Theta}$/0/90]$_{14s}$,[${\pm}{\Theta}_{14}$/$0_{14}$/$90_{14}$],[${\pm}$45/0/90]$_{18s}$ and [/0/90]$_{18s}$. At the result of this study, the optimized ply orientation angle is $75^{\circ}$. The critical load from experiment is 69% of that of numerical analysis, because the fracture of matrix was generated before buckling. So URN 300 is not proper to use at the condition under high external pressure.

  • PDF

경량화용 복합재 튜브의 적층구성이 흡수에너지 특성에 미치는 영향 (Influence of Stacking Sequence Conditions the Absorbed Energy Characteristics of Composite Tubes)

  • 김영남;김지훈;양인영
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.34-41
    • /
    • 2001
  • This study is to investigate the energy absorption characteristics of CFRP(Carbon-Fiber Reinforced Plastics) tubes on static and dynamic tests. Axial static compression tests have been carried out using the static testing machine(Shin-gang buckling testing machine) and dynamic compression tests have been utilized using an vertical crushing testing machine. When such tubes are subjected to crushing loads, the response is complex and depends on the interaction between the different mechanisms that could control the crushing process. The collapse characteristics and energy absorption have been examined for various tubes. Energy absorption of the tubes are increased as changes in the lay-up which may increase the modulus of tubes. The results have been varied significantly as a function of ply orientation and interlaminar number.

  • PDF

횡방향 충격을 받는 적층복합판의 층간전단응력 해석 (Interlaminar Shear Stresses of Laminated Composite Plates Subjected to Transversely Imp)

  • 안국찬;박승범;김봉환
    • 한국안전학회지
    • /
    • 제17권4호
    • /
    • pp.31-37
    • /
    • 2002
  • This paper demonstrates the analyses of the interlaminar shear stress of laminated composite plates subjected to transversely impact. For this purpose, a plate finite element model based on the higher order shear deformation plate theory in conjunction with static contact laws is developed. Test materials were CFRP with cross-ply laminate $[O_4/{\theta}_4]_S$, $[90_4/{\theta}_4]_S$ stacking sequences and angle-ply laminate $[{\theta}_4/-{\theta}_4]_S$, $[{\theta}_4/-{\theta}_4]_S$ stacking deguences with $2^t{\times}40^w{\times}100^l(mm)$ dimension. As a result, stacking seguence and fiber orientation were found to have a significant effect on the interlaminar stresses in composite laminates.

층간파괴인성치에 대한 섬유방향의 영향에 관한 연구 (A Study on the Effect of Fiber Orientation on the Interlaminar Fracture Toughness)

  • 이정규;엄윤성;김형진;고성위
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.89-97
    • /
    • 1995
  • The investigate the effect of fiber orientation on the interlaminar fracture toughness of carbon fiber reinforced plastics three prepregs which are domestic products are used in this paper. Those are used for the unidirectional composites, but only one is used for the cross-ply laminate composites which is molded $[0/90]_{6s},\;[0/45]_{6s},\;and\;[0/45/90]_{4s}$. The specimens used for the mode I and mode II Tests are DCB and ENF samples are examined by scanning electron microscope(SEM). The value of $G_{IC}$ is almost same when modified three calculating methods are applied. The highest value of $G_{IC}$at crack initiation is obtained at the $[0/90]_{6s}$ interlaminar and the lowest one is at the $[0/45/90]_{4s}$ interlaminar. The highest value of $G_{IIC}$ at crack initiation, however, is obtained at the $[0/90]_{6s}$ interlaminar and the lowest one is at the $[0/45]_{6s}$. The photographs of SEM show a difference behaviour between mode I and mode II fracture surface.

  • PDF

집중하중을 받는 일방향 섬유 금속 적층판의 손상 거동 (Damage Behavior of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions)

  • 남현욱;김용환;정성욱;정창규;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.407-412
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subject to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, Acoustic Emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. Cumulative AE counts were well predicted crack initiation and crack propagation and AE amplitude were useful for prediction of damage failure mode. During the matrix cracking, fiber debonding and fiber breakage, AE amplitude has $45{\sim}60dB,\;60{\sim}80dB\;and\;90{\sim}100dB$, respectively.

  • PDF

Influence of fiber paths on buckling load of tailored conical shells

  • Naderi, Ali-Asghar;Rahimi, Gholam-Hossein;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.375-387
    • /
    • 2014
  • The purpose of this paper is to propose a method for evaluation of varying stiffness coefficients of tailored conical shells (TCS). Furthermore, a comparison between buckling loads of these shells under axial load with the different fiber path is performed. A circular truncated conical shell subjected to axial compression is taken into account. Three different theoretical path containing geodesic path, constant curvature path and constant angle path has been considered to describe the angle variation along the cone length, along cone generator of a conical shell are offered. In the TCS with the arbitrary fiber path, the thickness and the ply orientation are assumed to be functions of the shell coordinates and influencing stiffness coefficients of the structure. The stiffness coefficients and the buckling loads of shells are calculated basing on classical shells theory (CST) and using finite-element analysis (FEA) software. The obtained results for TCS with arbitrary fiber path, thickness and ply orientation are derived as functions of shell longitudinal coordinate and influencing stiffness coefficients of structures. Furthermore, the buckling loads based on fiber path and ply orientation at the start of tailored fiber get to be different. The extent of difference for tailored fiber with start angle lower than 20 degrees is not significant. The results in this paper show that using tailored fiber placement could be applied for producing conical shells in order to have greater buckling strengths and lower weight. This work demonstrates the use of fiber path definitions for calculated stiffness coefficients and buckling loads of conical shells.

일방향 및 직교형 유리섬유/에폭시 복합재로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동 (Surface Fracture Behaviors of Unidirectional and Cross Ply Glass Fiber/Epoxy Lamina-Coated Glass Plates under a Small-Diameter Steel Ball Impact)

  • 장재영;최낙삼
    • Composites Research
    • /
    • 제22권4호
    • /
    • pp.33-40
    • /
    • 2009
  • 유리섬유/에폭시 복합재료로 피막한 판유리의 표변파괴거동에 대한 섬유방향효과를 미소강구 충격실험을 통해 연구했다. 본 연구에서는 단순소다유리판(soda-lime glass plates), 일방향 유리섬유/에폭시박막 (glass/epoxy lamina ply)을 1층 및 2층 접착, 직교형 유리섬유/에폭시 박막 (2층)을 접착한 4종류의 시편을 사용하였다. 유리판 배면에 스트레인게이지를 부착하여 충격중의 최대 응력과 흡수파괴에너지를 측정하였다. 피막없는 판유리의 경우 충격속도 증가에 따라 링균열, 콘균열, 레이디얼 균열이 충격표면부에서 발생하였다. 복합재료 박막으로 피막한 결과, 소다유리판의 균열은 현저히 감소하였으며 섬유층과 판유리사이의 박리 및 소성변형영역의 방향은 섬유방향으로 진행했다. 최대응력과 흡수파괴에너지를 이용하여 구한 충격 표면파괴지수는 표면저항의 효과적인 평가지수로서 사용될 수 있었다.

음향 방출법을 이용한 집중하중을 받는 일방향 섬유 금속 적층판의 손상 해석 (Damage Analysis of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions by Using Acoustic Emission)

  • 남현욱;김용환;한경섭
    • Composites Research
    • /
    • 제14권5호
    • /
    • pp.46-53
    • /
    • 2001
  • 집중하중을 받는 일방향 보강(singly oriented ply, SOP) 섬유 금속 적층판(fiber metal laminate, FML)의 손상 거동을 음향 방출법(acoustic emission, AE)을 이용하여 연구하였다. 섬유 방향의 영향을 연구하기 위하여 다양한 섬유 방향을 가지는 SOP FML을 제작하였으며, UTM을 이용하여 압입 하중을 가하였다. 압입 시험 시 발생하는 AE신호는 150kH의 공진 주파수를 가지는 AE센서를 이용하여 측정하였으며, 여기에서 발생된 신호를 하중-변위 선도와 비교하였다. SOP FML의 손상 과정은 균열 개시, 균열 전파, 관통에 따라 3구간으로 나누어 겼다. 균열 개시전까지의 AE 신호의 특성으로 보아 미소 균열이 시편의 하부에서 발생하고 이 균열이 시편의 두께 방향으로 전파되어 섬유 분리를 발생시키는 것으로 생각된다. 발생된 균열은 섬유 방향을 따라 성장하였으며, 이 때 60~80dB의 AE신호들이 발생되었다. 관통이 발생할 때는 80~100dB의 고진폭의 AE신호가 나타나 섬유의 파괴가 발생함을 보였으며, 섬유의 방향이 증가할수록 섬유의 파괴가 많이 발생되었다 누적 AE count선도는 FML의 압입 특성을 잘 나타내어 FML의 특성 변호 예측에 유용하게 사용될 수 있을 것으로 생각된다.

  • PDF

복합재 내압선체의 적층에 따른 좌굴하중 변화에 관한 유한요소 해석 (Finite Element Analysis on Buckling Pressure by the Lamination of Composite Pressure Bull)

  • 손정윤;조종래;배원병;권진회;최진호;조윤식;김두기
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.458-462
    • /
    • 2005
  • This paper deal with the optimal lamination condition of cylindrical shell applied new composite URN300 for a study of composite empirical formula. Finite element analyses for isotropic materials considered element numbers and boundary conditions are compared with existing empirical formulas to apply FE analysis for composite. And composite tensile test is done to know the composite material applied FE analysis for composite. The results of FE analyses for isotropic materials have indicated that Optimal element number and boundary condition were 1600 and both simple support. These conditions were applied in composite FE analyses. Ply orientations and lamination patterns in FE analyses for composite were considered. Ply orientations are $0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;and\;90^{\circ}$. Lamination patterns are $[\pm\theta/0/90]_{14s]$ and $[\pm\theta_{14}/0_{14}/90_{14}]_s$ in FE analysis. Lamination pattern $[\pm\theta_{14}/0_{14}/90_{14}]_s$ is the equivalent model of $[\pm\theta/0/90]_{14s}$. At the result of this study, the FE analyses for composite have indicated that the optimized ply orientation $75^{\circ}$ is and real model must use in FE analysis for accurate results.

  • PDF

Influence of temperature on the beams behavior strengthened by bonded composite plates

  • Bouazza, Mokhtar;Antar, Kamel;Amara, Khaled;Benyoucef, Samir;Bedia, El Abbes Adda
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.555-566
    • /
    • 2019
  • The purpose of this paper is to investigate the thermal effects on the behaviour reinforced-concrete beams strengthened by bonded angle-ply laminated composites laminates plate $[{\pm}{\theta}n/90m]_S$. Effects of number of $90^{\circ}$ layers and number of ${\pm}{\theta}$ layers on the distributions of interfacial stress in concrete beams reinforced with composite plates have also been studied. The present results represent a simple theoretical model to estimate shear and normal stresses. The effects the temperature, mechanical properties of the fibre orientation angle of the outer layers, the number of cross-ply layers, plate length of the strengthened beam region and adhesive layer thickness on the interfacial shear and normal stresses are investigated and discussed.