• Title/Summary/Keyword: Pluronic P123

Search Result 13, Processing Time 0.017 seconds

Electrocatalytic Reduction of Hydrogen Peroxide on Silver Nanoparticles Stabilized by Amine Grafted Mesoporous SBA-15

  • Vinoba, Mari;Jeong, Soon-Kwan;Bhagiyalakshmi, Margandan;Alagar, Muthukaruppan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3668-3674
    • /
    • 2010
  • Mesoporous SBA-15 was synthesized using tetraethylorthosilicate (TEOS) as the silica source and Pluronic (P123) as the structure-directing agent. The defective Si-OH groups present in SBA-15 were successively grafted with 3-chloropropyltrimethoxysilane (CPTMS) followed by tris-(2-aminoethyl) amine (TAEA) and/or tetraethylenepentamine (TEPA) for effective immobilization of silver nanoparticles. Grafting of TAEA and/or TEPA amine and immobilization of silver nanoparticles inside the channels of SBA-15 was verified by XRD, TEM, IR and BET techniques. The silver nanoparticles immobilized on TAEA and /or TEPA grafted SBA-15 was subjected for electrocatalytic reduction of hydrogen peroxide ($H_2O_2$). The TEPA stabilized silver nanoparticles show higher efficiency for reduction of $H_2O_2$ than that of TAEA, due to higher number of secondary amine groups present in TEPA. The amperometric analysis indicated that both the Ag/SBA-15/TAEA and Ag/SBA-15/TEPA modified electrodes required lower over-potential and hence possess high sensitivity towards the detection of $H_2O_2$. The reduction peak currents were linearly related to hydrogen peroxide concentration in the range between $3{\times}10^{-4}\;M$ and $2.5{\times}10^{-3}\;M$ with correlation coefficient of 0.997 and detection limit was $3{\times}10^{-4}\;M$.

Chiral Mesoporous Silica for Asymmetric Metal-free Catalysis: Enhancement of Chirality thorough Confinement Space by Plug Effect

  • Jeong, Eun-Yeong;Im, Cheong-Rae;Park, Sang-Eon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.199-199
    • /
    • 2011
  • The addition of a carbanion to ${\yen}{\acute{a}}{\yen}{\hat{a}}$-unsaturated carbonyl compounds is of importance in the C-C bond formation reactions for modern pharmaceuticals and organic synthesis. Recently, heterogeneous asymmetric catalysis became more attractive area of research because of the easy recovery and separation of the catalyst from the reaction system. Most of synthetic methods for heterogeneous catalysts were grafting or immobilization of homogeneous catalyst onto the solid supports. Trans-1,2-Diaminocyclohexane(DACH) and L-proline ligands have been enormously used as chiral ligands in several catalytic transformation under homogenous conditions. Our group prepared l-proline functionalized mesoporous silica was synthesized under acidic condition using a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer template (EO20PO70EO20, Pluronic P-123, BASF). Furthermore, we successfully directly synthesized trans-1,2 diaminocyclohexane functionalized mesoporous silica by using microwave method. The direct functionalization of chiral ligand into the framework of mesoporous materials is expected to be useful for the heterogeneous asymmetric catalysis. So, we adopt the direct synthesis of chiral ligand functionalized mesoporous silica by using thermal and microwave irradiation. Then, chiral ligand functionalized mesoporous silicas were applied to enantioselective asymmetric catalytic reactions.

  • PDF

The Biocidal Activity of Nano-sized Silver Particles Comparing with Silver Ion (은 이온과의 비교를 통한 나노 은 입자의 항균 특성 연구)

  • Kim, Jee-Yeon;Kim, Sung-Eun;Kim, Jae-Eun;Lee, Jong-Chan;Yoon, Je-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.771-776
    • /
    • 2005
  • In recent days, there is much interest in the biocidal activity of silver since silver is known to be safe and effective as disinfectant and biocidal material against coliforms and viruses. In particular, nano silted silver particles which can be used as effective biocidal material received more attention. Accordingly, it is important to investigate antimicrobial activity and mechanism of nano sized silver particles prepared in a cost-effective manner. In this study, nano sized silver particles were prepared via photoreduction of a silver salt ($AgNO_3$) in the bulk phase of $PEO_{20}-PPO_{70}-PEO_{20}$ (Pluronic 123) block copolymer The antimicrobial efficacy of silver nano particles against E. coli was investigated and compared with that of silver ion as the concentration of silver nano particles, pH ($5.6{\sim}8.2$), temperature ($4^{\circ}C{\sim}35^{\circ}C$) varied in aqueous system. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to examine the nature of damaged microorganism with nano sized silver particles and silver ion. This study showed that antimicrobial efficacy of silver nano particles was approximately one twentieth than that of silver ion. It was more biocidal at higher pH in contrast with silver ion. In addition, nano silver particles was demonstrated to disrupt the outer membrane of E. coli, subsequently causing their aggregation. On the other hand, silver ion diffused into the cell damaging the cytoplasmic membrane without disrupting the outer membrane of E. coli.