• Title/Summary/Keyword: Plunge Grinding

Search Result 39, Processing Time 0.048 seconds

Monitoring of Grinding Force in Plunge Grinding Process (원통 플런지 연삭시 연삭력에 관한 실험적연구)

  • Park, Jong-Chan;Park, Cheol-Woo;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.881-894
    • /
    • 1999
  • Cylindrical plunge grinding is widely used for final machining process of precision parts such as automobile, aircraft, measurement units. But in order to make parts which have high precision accuracy and high surface integrity, it is necessary to consider grinding characteristics due to accumulation phenomena of grinding wheel in plunge grinding process. In this study, in order to examine closely plunge grinding process, grinding power, grinding force, real depth of cut are monitored in transient state, steady state and spark out state. As the result, it is shown that grinding power and force are affected by dressing condition, depth of cut and speed ratio and that there exist threshold grinding force and it also affected by dressing condition. Also considered effects of grinding conditions on surface roughness and roundness of workpiece

A Study on the Grinding Force Characteristics in the Internal Plunge Grinding (내면 플런지 연삭에 있어서 연삭력 특성에 관한 연구)

  • Seo, Young-Il;Her, Man-Seung;Choi, Hwan;Lee, Jong-Chan;Cheong, Seon-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.54-59
    • /
    • 1999
  • High precision internal plunge grinding is difficult because of the decrease in the quill stiffness due to the small diameter of wheel. In this paper, the characteristics of internal plunge grinding were investigated. Grinding experiments were performed at various grinding conditions with vitrified bonded CBN wheels. The grinding period was assumed to be consisted of rough grinding and fine grinding. The classification of grinding was determined int terms of the normal grinding forces and actual depth of cut. The experimental results indicate that the higher depth of cut and infeed speed result in the longer rough grinding time. The maximum normal grinding force was nearly equal to the static force and it decreases exponentially as the grinding continues.

  • PDF

Monitoring/Control System for Cylindrical Plunge Grinding (원통 프런지 연삭공정의 감시/제어 시스템)

  • KIM, Sunho;Jung, Byung-Chul;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.66-73
    • /
    • 1995
  • This paper presents monitoring and control system to decrease non-production time such as air grinding and partial contact in cylindrical plunge grindings. The 4-stage model of the plunge grinding process is proposed according to the state of contact between grinding wheel and workpiece; air grinding, partial contact, entire contact and spark out. Experimentally it is seen that the AE sensor and ultrasonic sensor are very effective to detect the grinding states. Monitoring and control algorithm using recognized grinding process was introduced and a experiment were conducted to verify the developed system.

  • PDF

Study on the Optimal Control of the Plunge Grinding for Valve Parts in Batch Production (배치 단위 밸브 부품 생산용 플런지 연삭의 최적 연삭 제어에 관한 연구)

  • Choi, Jeong-Ju;Choi, Tae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4726-4731
    • /
    • 2011
  • This paper proposed the algorithm to select optimal grinding condition for plunge grinding in the batch production unit. In order to apply to the proposed algorithm, the state variable for plunge grinding process was defined and the optimal grinding condition for each cycle in batch production was decided by genetic algorithm. Based on the optimized grinding condition in each cycle, the optimal grinding condition for whole batch production was selected by dynamic programming. The proposed algorithm was evaluated by computer simulation.

A Study on the Comparison of Internal Plunge Grinding and Internal Thrust Grinding (내면 플런지 연삭과 스러스트 연삭의 비교)

  • Choi, Hwan;Seo, Chang-Yeon;Seo, Young-Il;Lee, Choong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.68-73
    • /
    • 2016
  • In this paper, the grinding characteristics in internal grinding methods(plunge, thrust) were studied with vitreous CBN wheels using machining center. Grinding experiments were performed according to the same material removal rate conditions such as a wheel speed, depth of cut and workpiece speed. And the grinding force, machining error and grinding ratio were investigated though these experiments. Based on the experimental results, the grinding characteristics on internal grinding methods were compared.

Characteristics of cylindrical plunge grinding in 200m/sec of grinding velocity (주속 200m/sec 영역에서의 원통플런지 연삭특성)

  • 주종길;박규열;전종업
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1047-1050
    • /
    • 2002
  • In this paper, grinding characteristics of cylindrical plunge grinding in 200m/sec of grinding velocity was investigated by use of vitrified CBN wheel. From the experimental result, it was convinced that grinding power is decreased 2.5times and grinding efficiency is heightened 3times more according to increasing wheel velocity 80m/sec to 200m/sec And also, be expected to improvement of surface roughness and roundness by increasing the wheel velocity.

  • PDF

Development of Monitoring/Control System for High Productive Grinding System (생산성 향상을 위한 연삭공정의 감시.제어시스템 개발)

  • 정병철;안중환;이상우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.425-428
    • /
    • 1994
  • Non-uniform minute deformation of a cylinderical workpiece resulted from the heat treatment process prior to the grinding makes it diffeclt to control the approaching feedrate of a grinding wheelto a workpiece optimallywithout on-site detection of the grinding states in the plunge grinding. The 4-stage model of the plunge grinding process is proposed according to the state of contact between grinding wheel and workpiece ; precontact, partial contact, entire contact and spark-out. Despite of being scrious to the precision of workpiece finished, the duration of spark-out is determined empirically. The purpose of this research is to develop a monitoring/control system for saving non- production time and setting the optimal spark-out time based on sensor information in the plunge grinding using AE and ultra sonic sensor.

  • PDF

Effect of workpiece speed in ultra high speed cylindrical plunge grinding (초고속 원통 플런지연삭에서 공작물속도의 영향)

  • 주종길;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.961-964
    • /
    • 1997
  • In this paper, grinding characteristics of ultra high speed cylindrical plunge grinding was investigated by use of vitrified CBN wheel. From the experimental result, it was convinced that grinding power is decreased according to the increase of wheel and workpiece speed due to changing of grinding mechanism which decreases depth of cut and length of contact curve according to increment of wheel speed. And also, stock removal reduction of each gram lead to improvement of surface roughness by increasing the wheel speed.

  • PDF

Roughness Model for the Plunge Grinding Process (플런지 연삭공정을 위한 거칠기 모델)

  • Choi, Jeong-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.443-448
    • /
    • 2009
  • The roughness models have developed to describe the grinding behaviour and predict the final quality of workpiece. The model forms of the plunge grinding process are generally established with initial and steady state model form in accordance with the accumulated metal removal. The steady state roughness model form are based on the grinding condition and specific parameters are used to show the influence of it according to the grinding process such as the equivalent chip thickness and accumulated metal removal. However, the models have been developed in past are not considered the effect of changing the grinding conditions in the same batch. In this paper, the roughness model form to consider the effect of changing grinding condition is proposed and the performance of proposed model is evaluated based on the experimental results.

  • PDF