• Title/Summary/Keyword: Plume dispersion

Search Result 103, Processing Time 0.027 seconds

An Experimental Study on the Variation of Vertical Dispersion within Boundary Layer with Surface Roughness (대기 경계층 연직방향 확산의 지면 거칠기에 따른 변화에 관한 실험적 연구)

  • 박옥현;윤창옥
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.237-246
    • /
    • 2000
  • An experimental study has been carried out using a rotating water channel in order to investigate the effect of surface roughness on the vertical dispersion of plume within boundary layer. Dispersion measurements of tracers released from two sources with different height at neutral conditions over various rough terrain ranging from rural to urban have been performed. Various values of roughness length were simulated by combining of 4 stream velocities and 3 roughness element conditions. Dispersion measurements have also been made for rough terrain where high buildings are locally concentrated. Values of $\sigma$z increase with roughness and this tendency appears to apply both cases of with and without locally concentrated high buildings. The comparisons of the Bowne's nomogram on $\sigma$2 vs x relationship and the measurements of $\sigma$2 with roughness show good accordance in $\sigma$2 distribution at stability D class over rural, suburban and urban terrain. For constant roughness length the $\sigma$2 values of plumes from lower source height are smaller than those of plumes from higher source at short downwind distance, but this relationship becomes reverse as distance increases. Crossing appears to be made before about 2km. The value of constant I in McMullen's equation $\sigma$2=exp [I+J(In x) + K(In x)2] appears to increase with roughness length, however, the relationships between other constants and roughness have been confirmed. The values of $\sigma$2 for various downwind distances, estimated by using an equation which is employed in ISC (Industrial Source Complex) dispersion model for areas where high buildings are locally assembled, are in accordance with measurements from water channel experiments.

  • PDF

Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable (입력변수의 조건에 따른 대기확산모델의 민감도 분석)

  • Chung Jin-Do;Kim Jang-Woo;Kim Jung-Tae
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.

Numerical Simulation for Recirculation of Air Mass in the Coastal Region Using Lagrangian Particle Dispersion Model (라그랑지안 입자확산모델을 이용한 광양만 권역에서의 공기괴 재순환현상 수치모의)

  • Lee, Hwa-Woon;Lee, Hyun-Mi;Lee, Soon-Hwan;Choi, Hyun-Jung
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.157-170
    • /
    • 2010
  • Air mass recirculation is a common characteristic in the coastal area as a result of the land-sea breeze circulation. This study simulates the recirculation of air mass over the Gwangyang Bay using WRF-FLEXPART and offers a basic information about the effective domain size that can reflect recirculation. For this purpose, WRF is set up four nested domains and three cases are selected. Subsequently FLEXPART is operated on the basis of WRF output. During the clear summer days with weak wind speed, particles that emitted from Yeosu national industrial complex and Gwangyang iron works flow into emission sources because of the land-sea breeze. When land-sea breeze is strengthen, the recirculation phenomena appears clearly. However particles aren't recirculated under weak synoptic condition. Also plume trajectory is analyzed and as a consequence, the smallest domain area have to be multiplied by 1.3 to understand recirculated dispersion pattern of particles.

An Effect of Heat Input on Thermal Storage for Horizontal Thermal Storage Tank with Heat pipe (열 파이프용 수평 축열조에서의 열 입력이 축열에 미치는 영향)

  • Pak, Ee-Tong;Jeong, Un-Chul
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.39-47
    • /
    • 1996
  • The horizontal thermal storage tank with heat pipe which is suitable for the sensible heat storage system is able to store a hot water from the heat source such as heating pad efficiently and to supply a hot water to load rapidly. And arrangement of heating pad play an important role in thermal flow and thermal storage efficiency. In this experiments, number of heating pad is ranged from three, five and nine, and when there is no change on number of heating pad, arrangements are two types of concentration-type and dispersion-type. Strong entrainment take place in the case of concentration-type of heating pad, and rapid temperature rise(${\Delta}{\doteqdot}1.6{\sim}3.2^{\circ}C$) in the tank is obtainable on the concentration-type than dispersion-type. In the constant number of heating pad, the concentration-type has the higher efficiency with about $5{\sim}6%$ than the dispersion-type Therefore, concentration-type of heating pad is an efficient design in constant number of heating pad.

  • PDF

Emission Characteristics of Elemental Constituents in Fine Particulate Matter Using a Semi-continuous Measurement System (준 실시간 측정시스템을 이용한 미세입자 원소성분 배출특성 조사)

  • Park, Seung-Shik;Ondov, John M.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.190-201
    • /
    • 2010
  • Fine particulate matter < $1.8{\mu}m$ was collected as a slurry using the Semicontinuous Elements in Aerosol Sampler with time resolution of 30-min between May 23 and 27, 2002 at the Sydney Supersite, Florida, USA. Concentrations of 11 elements, i.e., Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn, in the collected slurry samples were determined off-line by simultaneous multi-element graphite furnace atomic absorption spectrometry. Temporal profiles of $SO_2$ and elemental concentrations combined with meteorological parameters such as wind direction and wind speed indicate that some transient events in their concentrations are highly correlated with the periods when the plume from an animal feed supplement processing facility influenced the Sydney sampling site. The peaking concentrations of the elemental species during the transient events varied clearly as the plume intensity varied, but the relative concentrations for As, Cr, Pb, and Zn with respect to Cd showed almost consistent values. During the transient events, metal concentrations increased by factors of >10~100 due to the influence of consistent plumes from an individual stationary source. Also the multi-variate air dispersion receptor model, which was previously developed by Park et al. (2005), was applied to ambient $SO_2$ and 8 elements (Al, As, Cd, Cr, Cu, Fe, Pb, and Zn) measurements between 20:00 May 23 and 09:30 May 24 when winds blew from between 70 and $85^{\circ}$, in which animal feed processing plant is situated, to determine emission and ambient source contributions rates of $SO_2$ and elements from one animal feed processing plant. Agreement between observed and predicted $SO_2$ concentrations was excellent (R of 0.99; and their ratio, $1.09{\pm}0.35$) when one emission source was used in the model. Average ratios of observed and predicted concentrations for As, Cd, Cr, Pb, and Zn varied from $0.83{\pm}0.26$ for Pb to $1.12{\pm}0.53$ for Cd.

Thermohydraulic Characteristics of Two-Phase Flow in a Submerged Gas Injection System (잠겨진 가스분사장치에서의 2상유동의 열수력학적 특성)

  • Choi, Choeng Ryul;Kim, Chang Nyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1327-1339
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas Injection system. Effects of both the gas flow rate and bubble size were investigated. In addition, heat transfer characteristic and effects of heat transfer were investigated when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for the formulation of both the continuous and the dispersed phases. The turbulence in the liquid phase was modeled by the use of the standard $k-{\varepsilon}$ turbulence model. The interphase friction and heat transfer coefficient were calculated by means of correlations available in the literature. The turbulent dispersion of the phases was modeled by introducing a "dispersion Prandtl number". The plume region and the axial velocities are increased with increases in the gas flow rate and with decreases in the bubble diameter. The turbulent flow field grows stronger with the increases in the gas flow rate and with the decreases in the bubble diameter. In case that the heat transfer between the liquid and the gas is considered, the axial and the radial velocities are decreased in comparison with the case that there is no temperature difference between the liquid and the gas when the temperature of the injected gas is higher than the mean liquid temperature. The results in the present research are of interest in the design and the operation of a wide variety of material and chemical processes.

Evaluation of One-particle Stochastic Lagrangian Models in Horizontally - homogeneous Neutrally - stratified Atmospheric Surface Layer (이상적인 중립 대기경계층에서 라그랑지안 단일입자 모델의 평가)

  • 김석철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.397-414
    • /
    • 2003
  • The performance of one-particle stochastic Lagrangian models for passive tracer dispersion are evaluated against measurements in horizontally-homogeneous neutrally-stratified atmospheric surface layer. State-of-the-technology models as well as classical Langevin models, all in class of well mixed models are numerically implemented for inter-model comparison study. Model results (far-downstream asymptotic behavior and vertical profiles of the time averaged concentrations, concentration fluxes, and concentration fluctuations) are compared with the reported measurements. The results are: 1) the far-downstream asymptotic trends of all models except Reynolds model agree well with Garger and Zhukov's measurements. 2) profiles of the average concentrations and vertical concentration fluxes by all models except Reynolds model show good agreement with Raupach and Legg's experimental data. Reynolds model produces horizontal concentration flux profiles most close to measurements, yet all other models fail severely. 3) With temporally correlated emissions, one-particle models seems to simulate fairly the concentration fluctuations induced by plume meandering, when the statistical random noises are removed from the calculated concentration fluctuations. Analytical expression for the statistical random noise of one-particle model is presented. This study finds no indication that recent models of most delicate theoretical background are superior to the simple Langevin model in accuracy and numerical performance at well.

A simple data assimilation method to improve atmospheric dispersion based on Lagrangian puff model

  • Li, Ke;Chen, Weihua;Liang, Manchun;Zhou, Jianqiu;Wang, Yunfu;He, Shuijun;Yang, Jie;Yang, Dandan;Shen, Hongmin;Wang, Xiangwei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2377-2386
    • /
    • 2021
  • To model the atmospheric dispersion of radionuclides released from nuclear accident is very important for nuclear emergency. But the uncertainty of model parameters, such as source term and meteorological data, may significantly affect the prediction accuracy. Data assimilation (DA) is usually used to improve the model prediction with the measurements. The paper proposed a parameter bias transformation method combined with Lagrangian puff model to perform DA. The method uses the transformation of coordinates to approximate the effect of parameters bias. The uncertainty of four model parameters is considered in the paper: release rate, wind speed, wind direction and plume height. And particle swarm optimization is used for searching the optimal parameters. Twin experiment and Kincaid experiment are used to evaluate the performance of the proposed method. The results show that the proposed method can effectively increase the reliability of model prediction and estimate the parameters. It has the advantage of clear concept and simple calculation. It will be useful for improving the result of atmospheric dispersion model at the early stage of nuclear emergency.

The Effect of Similarity Condition for the Test Results in a Wind Tunnel Test (풍동실험에서 상사조건이 실험결과에 미치는 영향에 관한 연구)

  • 봉춘근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.351-362
    • /
    • 2000
  • To set the similarity conditions between a prototype usually in the field and its reduced-scale model is a crucial part in model tests. No technique is available to keep perfect similarity for this procedure so far. The experimental work using a wind tunnel is not exceptional. based on the field measurements, the effect of stack parameters and wind conditions on the dispersion of stack plume has been investigated in the laboratory. in this paper intensive methodology is focused on matching these similarities. Due to the limitations to keep perfect similarity conditions some simplifications are involved in common. In this study geometric conditions and kinematic conditions using Froude number and Reynolds number have been con-sidered to keep the similarity conditions required. From the tests it is found that the critical Reynolds number (Recrit) is 2,700 when the height of stack discharge is 50mm. The dispersion has a similar trend for the higher Reynolds number than the critical Reynolds number. It is also found that different Froude number does not make any significant influence for the normalized tracer gas concentrations at the recipient providing the same ratio of the wind speed to the discharge speed. No significant effect of stack diameter is observed in the normalized tracer gas concentrations with the same Frounde number. The similarity conditions therefore used in this study are reliable to simulate the conditions in prototype into the wind tunnel tests.

  • PDF

Formation and Dispersion of Nitric Acid Vapor from Stack Flue Gas

  • Park, Mi Jeong;Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.96-107
    • /
    • 2014
  • Extreme recovery of the thermal energy from the combustion of flue gas may bring about early gas condensation resulting in the increased formation of nitric acid vapor. The behavior of the nitric acid formed inside the stack and in the atmosphere was investigated through a computer-aided simulation in this study. Low temperatures led to high conversion rates of the nitrogen oxide to nitric acid, according to the Arrhenius relationship. Larger acid plumes could be formed with the cooled flue gas at $40^{\circ}C$ than the present exiting gas at $115^{\circ}C$. The acid vapor plume of 0.1 ppm extended to 25 m wide and 200 m high. The wind, which had a seasonal local average of 3 m/s, expanded the influencing area to 170 m along the ground level. Its tail stretched 50 m longer at $40^{\circ}C$ than at $115^{\circ}C$. The emission concentration of the acid vapor in the summer season was a little lower than in the winter. However, a warm atmosphere facilitated the Brownian motion of the discharged flue gas, finally leading to more vigorous dispersion.