• Title/Summary/Keyword: Plug cell size

Search Result 38, Processing Time 0.023 seconds

Effect of Cell Size on Growth and Development of Plug Seedlings of Three Indigenous Medicinal Plants (플러그 셀 크기가 세 가지 자생 약용식물 묘 생육에 미치는 영향)

  • Oh, Hye Jin;Park, Yoo Gyeong;Park, Ji Eun;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.71-76
    • /
    • 2014
  • There have not been many studies conducted on the seedling production, especially in plug trays, of traditional medicinal plant species. In an effort to establish guide lines for seedling production, this study investigated the effect of plug cell size on the growth and development of plug seedling of three medicinal plant species. Seeds were sown in either 128, 200, or 288-cell plug trays, containing a commercial medium. Growth and development of individual seedling was generally promoted with increasing size of a plug cell in all of the three species. The greatest biomass of the seedlings gained in a plug tray was obtained in the 288-cell trays in Perilla frutescens var. acuta Kudo and Sophora tonkinensis, and the 200-cell trays in Angelica gigas Nakai. Overall growth and development of the shoot and root of a single seedling of Perilla frutescens var. acuta Kudo, except total chlorophyll and anthocyanin contents, was the greatest in the 128-cell tray. However, length of the longest root, length, width and area of the leaf, internode length, root fresh weight, and root ball formation in the 200- and 288-cell trays were not significantly different each other. In Sophora tonkinensis, although length of the longest root, stem diameter, leaf width, leaf area, shoot fresh weight, and root ball formation were not significantly different among the treatments, length of the longest root and root ball formation of a single seedling were the greatest in the 128-cell tray. Overall shoot and root growth, except total chlorophyll content, of a single seedling of Angelica gigas Nakai was the greatest in the 128-cell tray. Based on the total biomass, it is concluded that 288-cell trays are recommended for production of plug seedlings of medicinal plant species P. frutescens var. acuta Kudo and S. tonkinensis. In A. gigas Nakai, it would be more economical to use the 200-cell trays than 128-cell trays due to total biomass.

Effects of Spacing and Plug Cell Size on Seedling Quality and Yield and Qualities of Tomatoes (토마토 육묘시 공간처리 및 배지부피가 묘소질 및 과실의 수량 품질에 미치는 영향)

  • Kim, Sung Eun;Lee, Moon Haeng;Ahn, Beum Jun;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.256-261
    • /
    • 2013
  • The spacing between plug cells and cell volume of each plug cell for nursing tomato seedlings were studied to know the effects on seedling growth and early yield. There were four treatments. The spacing of plug cells was done (OK) or not (NO) in case of cell spacing. The cell number in a plug tray was set to 40 or 50 in case of cell volume. The growth environment and irrigation regime were the same in all of the treatments during the experiment period. The photosynthetic rates, seedling qualities, yield and yield speed were significantly affected by both of the treatments. The photosynthetic rates and seedling qualities were the best in 40S-OK following by 50S-OK, 40S-NO, and 50S-NO while the yield was the best in 40S-OK following by 40S-NO, 50S-OK, 50S-NO. It means the spacing gives more impact than the cell volume in the stage of nursing but the cell volume gives more impact than the spacing after the stage of nursing. In the conclusion the spacing of plug cells in appropriate nursing stage is needed with the appropriate cell volume to make high quality of seedlings and high yield.

Effect of Plug Cell Size and Variety on the Production of Onion Set for Pickle (플러그 셀 크기와 품종이 절임용 양파 자구 생산에 미치는 영향)

  • Ahn, Su-Ran;Im, Kyung-Ran;Kim, Do-Hun;Suh, Jun-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.28-32
    • /
    • 2012
  • This study was conducted to improve year round production of onion sets for pickles and increase their yield by using different cell sizes of plug trays. 'Josaeng sseondeobol' and 'Daeji' were seeded in 105-cell tray, 128-cell tray, and 162-cell tray on March 27, 2010. 'Josaeng sseondeobol' showed the maximum number of leaves on May 23, but 'Daeji' showed the maximum in late June. Bulbing of 'Josaeng sseondeobol' was already initiated on May 23, but 'Daeji' was initiated on June 6. Growth of both varieties was better in 105-cell tray than the others. There wasn't a difference in bulbing between two varieties by the number of cells, but bulb size was larger in the low number of cells than high ones. 'Josaeng sseondeobol' was all harvested in July, but more than 50% of 'Daeji' was harvested in August. The result of this study is as follows. Harvest time was delayed as the number of cells is increasing. There was a wide range of small onion sets distribution in both varieties as the number of cells is increasing.

Effect of Day Length on the Growth of Plug Seedlings and Bulbing after Planting in Onion (Allium cepa L.) (양파 공정육묘시 일장조건이 묘 생육 및 정식 후 구 비대에 미치는 영향)

  • 서전규
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.101-105
    • /
    • 2003
  • This experiment was conducted to find out the effect of day length on the production of high quality plug seedlings in onion (Allium cepa L.). Two cultivars, ‘Changnyongdaego’ and‘Wolryun’, were grown to seedlings in 200-cell plug trays under 11.5, 12.5, 13.5 hours and natural day length. These seedlings were transplanted to the pot (16 cm In diameter) and grown under 16 hours day length. Number of leaves and neck diameter showed better growth in the longer than shorter day length treatments, but plant height old sheath length were retarded in the longer day length treatments. Growth such as no. of leaves, neck diameter, plant height and sheath length increased with the passage of day, but plant height and neck diameter decreased by treatment over 20 days with 13.5 hours day length. Bulbing and bulb size of onion after transplanting were enhanced in the seedlings cultured under longer day lengths. From the above results, treatment of long day length during seedling culture in plug tray can control the overgrowth and produce high quality plug seedlings.

Characteristics of Seed Germination and Seedling Growth of Native Hydrangea serrata for. acuminata (자생 산수국의 종자 발아와 유묘 생육 특성)

  • Lee, Seung Youn;Kim, Kwang Jin;Lee, Jeong Sik
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.2
    • /
    • pp.134-142
    • /
    • 2008
  • This work aims to obtain basic information for seed propagation of Hydrangea serrata for. acuminata. The germination percentage of the seeds taken on 15 November, 30 December, and 23 January was $90.0{\pm}4.16%$, $84.4{\pm}5.52%$, and $88.9{\pm}2.40%$, respectively. This suggest that seeds of Hydrangea serrata for. acuminata are non-dormant seeds. The optimum temperature for germination was $25^{\circ}C$ and light was necessary. Most of the growth parameters (shoot and leaf length, stem diameter, root length, no. of roots, T/R ratio, and fresh and dry wts.) were significantly greater at $25/20^{\circ}C$ and $25^{\circ}C$ than at the other temperatures. Low T/R ratio at relatively cool temperatures (15 and $20^{\circ}C$) was caused by suppressed top growth. In light quality treatment, red light (RL) significantly enhanced stem elongation. The greatest photosynthetic pigments (total chl, chl a/b, and carotenoid) were observed in seedlings grown in blue light (BL), followed by seedlings grown in RL+BL. When blue light was added, higher pigment contents were found. Effect of plug cell size (50, 72, 128, 162 and 200 cells) on the growth of seedlings was investigated. The highest top growth was observed in seedlings grown in 50 cell trays, followed by seedlings grown in 72, 128, 162, and 200 cell trays. However, there was no significant differences between 162 and 200 cell trays. Especially, smaller size leaves were observed in seedlings grown in smaller cell trays (lower volume and high plant density).